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Abstract

Slang is a common type of language that makes creative and highly flexible use of

words. A basic problem that language users tackle is how to develop and interpret

novel slang terms for communication in a community. This problem is relevant for

natural language processing since new slang expressions often emerge in daily con-

versations and online social media. However, principled computational approaches

to modeling slang are lacking, which presents key challenges to the effective natural

language processing of slang. In this dissertation, I develop a computational frame-

work that offers new methodologies for the automated generation, interpretation, and

translation of English slang word usages, as well as for characterizing the principles

in slang variation across language communities.

My dissertation is organized into three main parts. The first part addresses the

under-explored problem of slang semantic extension, namely how existing words in the

lexicon take on new meanings in informal context. I develop a generative framework

that combines contrastive learning with probabilistic models of semantic chaining to

capture slang semantic extension. By leveraging dictionary-based resources of slang,

I show how the learned semantic representations more accurately predict slang word

choices compared to existing approaches that rely more exclusively on corpus data.

The second part of my dissertation tackles the inverse problem of slang interpretation

by applying these semantic representations to interpret and translate novel slang us-

ages in natural text. I show how this approach provides better accuracy and sample

efficiency in both slang interpretation and translation, in comparison to baseline con-
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textualized language models. Finally, the third part of my dissertation investigates

semantic variation of slang across different language communities focusing on a com-

parative study of US and UK. I show that models incorporating either communicative

need or semantic chaining can predict the regional identity of slang usages.

In summary, my dissertation contributes a principled framework for modeling the

lexical semantics and usages of English slang, and it opens up future opportunities

for the computational investigation and automated processing of informal language

across a diverse set of communities and languages.

iii



To my father for his unwavering support throughout this journey.

To my aunt for raising me and enabling this monumental achievement of my life.

iv



Acknowledgments

I would like to express my most sincere gratitude to everyone who has supported me

during my Ph.D. studies. First and foremost, I wish to thank my doctoral supervisor,

Prof. Yang Xu, for providing me with this opportunity and for his dedication and

patience throughout my Ph.D. I would not have produced this thesis without your

invaluable advice. I am fortunate to be able to tell others, with confidence, that I

have enjoyed my Ph.D. studies. Thank you for your kind support.

I would also like to thank my committee members Prof. Graeme Hirst and Prof.

Richard Zemel for their continued support, from the inception of my thesis topic all

the way towards its completion. Your insightful questions and feedback have been

instrumental in enriching the quality of my work.

Furthermore, I would like to thank Prof. Raquel Fernández, for being a wonderful

external appraiser and Prof. Michael Garton for chairing my final defense in such a

professional manner.

I am indebted to all my professors and colleagues in the Computational Linguistics

group who have contributed to improving the quality of my work. Special thanks to

everyone in the Language, Cognition, and Computation group for their encourage-

ment and feedback throughout the development of this work. I would also like to

thank Jai Aggarwal and Katie Warburton for organizing the student social events.

They have kept me mentally nourished during the uncertain days of the pandemic.

I would like to acknowledge OSAP, NSERC, and Amazon Alexa for contributing

to the funding of my Ph.D. research via scholarships and research grants.

Last but certainly not the least, I would like to express my deepest gratitude to

my family who has made this journey encouraging and comfortable. Thank you all

for always believing in me.

Toronto,

November 2023

v



Contents

1 Introduction 1

1.1 What is slang? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Creation of slang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Coinage: Word formation . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Reuse: Semantic extension . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Modeling slang . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Slang in natural language processing . . . . . . . . . . . . . . . . . . 10

1.4 Key modeling challenges . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Overview of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Related work 21

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Computational studies of slang . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Automatic processing of slang . . . . . . . . . . . . . . . . . . 22

2.2.1.1 Dictionary-based approaches . . . . . . . . . . . . . 22

2.2.1.2 Deep learning based approaches . . . . . . . . . . . . 24

2.2.2 Slang variation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Models of word formation . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Lexical blending . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Modeling out-of-vocabulary words . . . . . . . . . . . . . . . . 31

vi



2.4 Computational studies of semantic extension . . . . . . . . . . . . . . 33

2.5 Slang data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Slang generation 39

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Slang generation framework . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Probabilistic word choice model . . . . . . . . . . . . . . . . . 44

3.3.2 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Contrastive sense encodings . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Contextual prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Syntactic-Shift Prior (SSP) . . . . . . . . . . . . . . . . . . . 50

3.5.2 Linguistic Context Prior (LCP) . . . . . . . . . . . . . . . . . 50

3.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 Lexical resources . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1.1 Slang dictionary . . . . . . . . . . . . . . . . . . . . 51

3.6.1.2 Conventional word senses . . . . . . . . . . . . . . . 52

3.6.1.3 Data split . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1.4 Urban Dictionary . . . . . . . . . . . . . . . . . . . . 53

3.6.2 Part-of-Speech Data . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.3 Contextualized Language Model Baseline . . . . . . . . . . . . 54

3.6.4 Baseline Embedding Methods . . . . . . . . . . . . . . . . . . 54

3.6.5 Training Procedures . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7.1 Slang generation . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7.2 Evaluation on historic slang . . . . . . . . . . . . . . . . . . . 57

3.7.3 Zero-shot vs. few-shot generation . . . . . . . . . . . . . . . . 59

3.7.4 Synonymy in slang . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



3.7.5 Comparing sense representations . . . . . . . . . . . . . . . . 62

3.7.6 Example generations . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Slang interpretation and translation 67

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Baseline approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Unsupervised language model based interpretation . . . . . . . 72

4.3.2 Supervised deep learning based interpretation . . . . . . . . . 73

4.4 Semantically-informed slang interpretation . . . . . . . . . . . . . . . 74

4.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Generative model of slang semantics . . . . . . . . . . . . . . 74

4.4.3 Semanticically-informed reranking . . . . . . . . . . . . . . . . 75

4.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 Training procedures . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.2.1 Baseline Models . . . . . . . . . . . . . . . . . . . . 77

4.5.2.2 Semantic Reranker . . . . . . . . . . . . . . . . . . . 78

4.5.3 Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.1 Slang interpretation . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.2 Few-shot slang interpretation . . . . . . . . . . . . . . . . . . 84

4.6.3 Effect of Context Length . . . . . . . . . . . . . . . . . . . . . 85

4.6.4 Finetuning Dual Encoder . . . . . . . . . . . . . . . . . . . . . 85

4.7 Application in slang translation . . . . . . . . . . . . . . . . . . . . . 86

4.7.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Semantic variation in slang 95

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Theoretical Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Communicative need . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Semantic distinction . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Quantifying variation in slang . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Slang vs. conventional . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Regional slang . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . 99

5.3.2.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Models of semantic variation in slang . . . . . . . . . . . . . . . . . . 102

5.4.1 Predictive task . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Models based on communicative need . . . . . . . . . . . . . . 103

5.4.3 Models based on semantic distinction . . . . . . . . . . . . . . 104

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.2 Inferring regional identity of slang . . . . . . . . . . . . . . . . 108

5.5.3 Memory in semantic variation . . . . . . . . . . . . . . . . . . 111

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusion 114

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Future extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Extending the model of slang semantics . . . . . . . . . . . . . 116

6.2.2 Slang and large language models . . . . . . . . . . . . . . . . 118

6.2.3 Fairness and privacy . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.4 Applications in linguistics and social science . . . . . . . . . . 123

ix



6.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Resources 127

Bibliography 129

x



List of Tables

1.1 Example slang usages illustrating innovative strategies employed in

slang sense extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Distribution of conventional and slang sense extension types . . . . . 8

2.1 Summary of datasets for English slang in natural language processing 36

3.1 Summary of dataset statistics for the online slang dictionaries used in

the slang generation study . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Summary of model AUC scores (%) for slang generation in 3 slang

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Summary of model AUC scores in historical prediction of slang emer-

gence (1960s-2000s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Model AUC scores (%) for Few-shot and Zero-shot test sets . . . . . 60

3.5 Mean embedding distance ranks between conventional and slang sense

embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Example predictions from the slang generation models . . . . . . . . 65

4.1 Summary of dataset statistics for the online slang dictionaries used in

the slang interpretation study . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Evaluation of slang interpretation . . . . . . . . . . . . . . . . . . . . 80

4.3 Slang interpretation examples . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Continuation of Table 4.3 showing additional interpretation examples 83

xi



4.5 Slang interpretation results on OSD before and after finetuning the

language infill model . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Interpretation results on OSD when training the Dual Encoder without

filtering out entries corresponding to words in the OSD testset . . . . 85

4.7 Examples of machine translation of slang . . . . . . . . . . . . . . . . 88

4.8 Continuation of Table 4.7. Examples of machine translation of slang . 91

4.9 Continuation of Table 4.8. Examples of machine translation of slang . 92

4.10 Continuation of Table 4.9. Examples of machine translation of slang . 93

5.1 Wiktionary metadata tags used to determine whether a sense is a slang

or belongs to US or UK . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Number of GDoS word and sense entries obtained after constraining

the minimum number of regional senses per region . . . . . . . . . . . 106

5.3 Mean percentage accuracy of all models of semantic variation on the

region tracing task with words that have at least 5 regional senses in

each region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Mean percentage accuracy of all models of semantic variation on the

region tracing task with words that have at least 3 regional senses in

each region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Normalized ranks of a word’s slang definition embedding towards its

conventional definition embedding . . . . . . . . . . . . . . . . . . . . 120

xii



List of Figures

1.1 Illustration of the main contributions . . . . . . . . . . . . . . . . . . 17

2.1 Illustration of Pei et al.’s neural architecture for slang detection . . . 25

2.2 Illustration of categorization models . . . . . . . . . . . . . . . . . . . 34

3.1 A slang generation framework that models speaker’s choice of a slang

term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Mean sense embedding distances between pairs of conventional and

slang sense extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 ROC curves for slang generation in OSD test set . . . . . . . . . . . . 56

3.4 Degree of synonymy shared between training and test examples . . . 62

3.5 Model AUC scores (%) under test sets with different degrees of syn-

onymy present in training . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Illustrations of slang interpretation and slang translation . . . . . . . 68

4.2 Overview of the slang interpretation method . . . . . . . . . . . . . . 69

4.3 Evaluation of slang interpretation performance by context length . . . 89

4.4 Translation scores of translated sentences with the slang replaced by

n-best interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Illustration of semantic variation in the slang word beast . . . . . . . 96

5.2 Distribution of regional identities among sense entries found in the

English Wiktionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



5.3 The distribution of GDoS slang senses and word forms across different

regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Predictive accuracy of the best performing models of semantic variation

relative to the minimum number of regional senses . . . . . . . . . . . 110

5.5 Predictive accuracy of all chaining models with shared senses after

removing historical senses that exceed the memory threshold during

prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Relative language modeling performance between literal and slang us-

ages for state-of-the-art large language models . . . . . . . . . . . . . 118

6.2 Absolute language modeling performance on slang usages for state-of-

the-art large language models across different emergence period for the

slang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiv



Chapter 1

Introduction

1.1 What is slang?

Slang is a type of language that is often used in colloquial speech. The recent emer-

gence of online social media platforms has also made slang more commonplace in

written forms. A precise definition of slang, however, remains an open question

among linguists (Dumas and Lighter, 1978). For example, the Oxford English Dic-

tionary (OED) defines slang as “language of a highly colloquial type, considered as

below the level of standard educated speech, and consisting either of new words or

of current words employed in some special sense” (Stevenson, 2010).1 Meanwhile,

Merriam-Webster (2004) defines slang as “language peculiar to a particular group”

and that it is “an informal nonstandard vocabulary composed typically of coinages,

arbitrarily changed words, and extravagant, forced, or facetious figures of speech”.2

Finally, in her seminal work on slang, Eble (2012) defines slang as “an ever chang-

ing set of colloquial words and phrases that speakers use to establish or reinforce

social identity or cohesiveness within a group or with a trend or fashion in society

at large”. Indeed, even the most recent slang definitions from well-known sources

vary substantially from each other. As Dumas and Lighter (1978) have pointed out,

1https://www.oed.com/view/Entry/181318
2https://www.merriam-webster.com/dictionary/slang

1

https://www.oed.com/view/Entry/181318
https://www.merriam-webster.com/dictionary/slang
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such definitions also tend to be imprecise. For instance, what constitutes as “highly

colloquial language” and “arbitrarily changed words” is very loosely defined.

Fortunately, many important characteristics of slang are commonly agreed upon.

First, slang is often considered informal (Spears, 1981; Landau, 1984; Mattiello, 2005),

meaning that it is seldom seen in formal text (Michel et al., 2011). Next, slang is often

short-lived (Sornig, 1981; Eble, 1989; Tagliamonte and Denis, 2008) with a tendency

to phase out quickly compared to standard language. Also, slang usages are innovative

and flexibly employ creative linguistic devices such as metaphor, amelioration, and

irony (Warren, 1992; Eble, 2012). Finally, the creation and use of slang are socially

driven (Labov, 1972, 2006; Slotta, 2016). For example, community-specific slang

can be created and used to reinforce membership status and cohesion within the

community (Mattiello, 2005; Eble, 2012). Dumas and Lighter (1978) argue that

slang can be defined via a set of core characteristics. Specifically, an expression that

embodies many of slang’s characteristics is likely to be treated as slang by language

users.

Alternatively, linguists have attempted to describe slang by differentiating it from

other types of non-standard language with overlapping characteristics, including jar-

gon, dialect, profanity, and cant. For example, Mattiello (2005) differentiates slang

and jargon by the level of prestige. Whereas jargon is often used by professionals in

formal settings to convey prestige and pretentiousness, slang terms tend to be more

familiar and spontaneous. Eble (2012) acknowledges that both slang and jargon can

be used by specific groups of users, but unlike jargon, slang usually conveys “feelings,

attitudes, and unity of spirit”. Such a description is consistent with the characteris-

tics of slang: Although both slang and jargon are socially driven, slang tends to be

more short-living, informal, and innovative in its expression.

Another important aspect of slang that complicates its definition is convention-

alization — when a slang expression loses its defining characteristics and enters the

standard language. For example, using the word cool to express ‘something good’
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was considered as a slang usage a hundred years ago. Although it is still arguably

less formal than the word good today, the use of cool to express ‘something good’ is

generally considered standard English and not a slang. It is thus also important to

consider the temporal aspect of slang when defining it, for that the categorization of

language expressions as slang may be restricted to a specific time-frame. Given the

ephemeral nature of slang, most slang usages phase out before reaching conventional-

ization (Eble, 1989). As a consequence, those usages remain to be perceived as slang,

although rarely used.

In this dissertation, I use lexicographic resources of slang to define and distin-

guish between slang and standard language. Specifically, I consider a word-sense3

pair to be slang if it can be found in a slang dictionary (e.g., Green, 2010). Word

senses found in standard dictionaries such as the OED are considered as conventional

senses if they are not labeled as slang or informal. Note here that neither the word

form nor its meaning alone is sufficient in specifying a slang usage. For example,

consider the sentence “Good purchase, that jacket is blazing”. Here, the slang word

blazing is used to refer to ‘First-rate, excellent’ instead of its conventional sense ‘Burn-

ing brightly’ (Green, 2010). In this case, the word blazing itself cannot distinguish

whether it is being used as a slang expression or not. Only when it is used in the

slang context involving a purchased jacket, the meaning of blazing inferred from the

usage context manifests its use as slang. Similarly, the sense ‘First-rate, excellent’

can be expressed conventionally using words such as amazing and fabulous but is only

considered a slang sense when attached to the word blazing.

Therefore, a well-specified slang usage not only requires a word-form (which may

not necessarily be a neologism) but also the attached slang sense. Here, the association

between the word-form and the slang sense is non-arbitrary. From a communicative

perspective, the slang sense needs to be semantically associated with the word that

it is attached to, so that listeners can efficiently infer the intended meaning based on

3I will use the terms meaning and sense interchangeably.
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their knowledge of the word (Sornig, 1981; Warren, 1992; Eble, 2012).

1.2 Creation of slang

Human speakers create novel slang usages to address communicative need (Sornig,

1981) and/or to reinforce group membership (Eble, 2012). For example, the use of

beast to refer to ‘Subway #2 of NYC’ illustrates communicative need for people living

in New York City. Meanwhile, the same word can be used to express excellence in

the US but is commonly used to refer to criminals in the UK (Green, 2010). As

a result, one who uses beast to express excellence reinforces group membership by

presenting themselves to others as members of the US community. In both cases,

the intended meaning must carry appropriate associations with the lexical choice

to facilitate efficient communication between speakers and listeners. Given a to-be-

expressed meaning such as ‘First-rate, excellent’, the speaker can employ two distinct

strategies in creating a new slang usage. Slang can thus be broadly categorized into

two types based on its method of creation. First, a novel slang expression can be

coined to express a not-necessarily-new meaning. Also, an existing expression can

be taken from the lexicon with a new slang sense attached to the expression. I refer

to these strategies as coinage and reuse. In this section, I describe both generative

processes of slang and potential modeling strategies.

1.2.1 Coinage: Word formation

The coinage process can be as simple as creating a new acronym, or invoking more

intricate word formation processes such as lexical blending (Eble, 2012). For example,

the slang mocktail is a result of blending constituent words mock and cocktail with

a meaning of ‘A non-alcoholic drink’ (Green, 2010). Here, the lexical choice mocktail

has clear morphological associations with its intended meaning. An alternative word

with no clear association, such as modams, would be less likely to be attached with
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the intended meaning, and even less so for arbitrary forms such as mktla that is not

composed of standard English morphemes. The creation of slang forms can also take

phonemic associations into account (Sornig, 1981). For instance, the slang knees is

an Australian rhyming slang meaning ‘Please’.4 Here, not only that the morpheme

knee is metaphorically associated to the intended meaning, but the overall similarly

in sound also plays a notable role.

Slang forms are also not restricted to single-word expressions but can appear as

multi-word phrases. For example, bird course is a well-known Canadian slang phrase

that refers to ‘An easy course’. Here, compositional semantics dictates the intended

meaning instead of morphophonemic units of a word. It is conceivable that the

metonymy between a bird’s flight and easiness for the word bird, combined with the

literal meaning of course, construe the intended slang meaning ‘An easy course’.

In both cases, the meaning of the slang expression can be traced back to its con-

stituent units (i.e. phonemes, morphemes, or words). However, such associations

also appear in standard language. It is unclear whether novel coinages that are con-

sidered slang differ in their underlying word-sense associations. For instance, the

conventional blend brunch also owes its meanings to its constituents breakfast and

lunch, but whether its meaning is deduced in the same way as slang such as mocktail

remains an open question.

1.2.2 Reuse: Semantic extension

Aside from coinage, the reuse of an existing word or phrase also makes up a signif-

icant portion of slang (Warren, 1992; Green, 2010; Eble, 2012). Here, an existing

expression is taken from the lexicon with a slang sense attached (e.g., attaching the

sense ‘First-rate, excellent’ to the word blazing), where the slang sense differs from

existing conventional senses of the word. The phenomenon of slang reuse can be

naturally viewed as sense extension, a process in which new senses are attached to an

4https://en.wiktionary.org/wiki/Appendix:Australian English rhyming slang
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existing word. Paul (1880) describes semantic extension as the derivation of meaning

from a word’s conventional senses.5 Here, conventional sense refers to the meaning

of a word that is part of the standard language. Language users then derive occa-

sional senses to lexical items. If such derivation receives wide-spread use, then the

occasional sense becomes a new conventional sense attached to the lexical item, thus

making the lexical item polysemous. For example, blazing originally means ‘Burning

brightly’ but has been extended to ‘Of outstanding heat’ (Merriam-Webster, 2004;

Stevenson, 2010). Similarly in the case of slang, the new slang sense can be viewed

as an extension from a word’s conventional senses. For example, blazing extended

from ‘Burning brightly’ and ‘Of outstanding heat’ to express ‘First-rate, excellent’ as

slang.

To facilitate efficient cognitive processing, words are more likely to extend to senses

that are semantically consistent with existing senses (Klein and Murphy, 2001). In

the blazing example, however, the disparity in meaning appears to be more distant

for slang extension. Specifically, there is a smaller semantic gap between the two

conventional senses describing fire than between those and the slang sense. Therefore,

a natural question to ask here is whether the slang senses emerge from historical

conventional senses of the word akin to conventional word sense extension. And if

so, in what ways are the mechanisms behind conventional sense extension and slang

sense extension similar or different?

A set of 500 conventional and slang usages collected by Warren (1992) shows

that the extension devices employed by conventional sense extension indeed differ

considerably compared to those of slang. Specifically, the majority of conventional

sense extension cases involve particularization of the original sense which makes the

resulting sense in close semantic proximity to the original. In comparison, slang

semantic extension is much more creative and devices such as metaphor, metonymy,

amelioration, and irony are often observed and can appear in conjunction (Eble,

5Based on Warren’s (1992) account.
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Word Original conventional sense Extended slang sense Type of extension

sick Being ill. Good, excellent. Irony

wicked Evil or mischievous by nature. Excellent, wonderful. Irony

slut A sexually promiscuous woman. An affectionate term of Amelioration
address among women.

future An expectation of advancement An unattractive man. Pejoration
or progressive development.

all-nighter Something that lasts working all night before an Particularization
throughout the whole night. examination.

blazing Burning brightly and with First-rate, excellent. Metonomy
great heat, force, etc.

kick Propel with foot. A strong taste. Metonymy

beast A large animal. A fast car. Metonymy

wolf A wild, dog-like animal. A predatory person. Metaphor

ice Frozen water. To kill. Metaphor

night owl An owl (order Strigiformes) Anyone who is habitually out Metaphor
that is nocturnal. and about at nighttime.

steamed Being vaporized. Being angry. Metaphor

Table 1.1: A list of slang usages from Green (2010) and Eble (2012) illustrating the rich set of
innovative sense extension strategies that are employed in slang word reuse.

2012). Table 1.1 shows a list of example slang usages involving such sense extension

strategies.

Warren analyzed 1,000 sense extension examples and categorized them into a

pre-defined set of sense extension devices. Inspired by prominent theories in the

field (Paul, 1880; Stern, 1931; Ullmann, 1942), Warren categorized sense extension

into the following four broad categories:

• Particularization — A hyponymic sense with additional distinctive features added

to the original sense. E.g., cutting gear : ‘Equipment for cutting’ → ‘Gas-

operated cutting equipment that breaks into safes’.

• Implication — A novel sense formed by retrieving additional contextual informa-

tion from relevant communicative contexts. E.g., sweat : ‘Emit sweat’ → ‘Work

hard’.

• Metonymy — Formed by aggregating features of referents that are closely con-

nected to the original sense. E.g., gate: ‘Structure to block entrance’ → ‘Money
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Type Conventional Slang

Particularization 169 (33.8%) 56 (11.2%)

Implication 32 (6.4%) 65 (13.0%)

Metonymy 27 (5.4%) 41 (8.2%)

Metaphor 205 (41.0%) 245 (49.0%)

Other 67 (13.4%) 93 (18.6%)

Table 1.2: Distribution of conventional and slang sense extension types among the 1000 sense ex-
tension examples from Warren (1992).

collected at gate’.

• Metaphor — Formed by aggregating features of referents that are reminiscent

of the original sense. E.g., gate: ‘Structure to block entrance’ → ‘Switch’.

Table 1.2 shows the distribution of both conventional and slang sense extensions

categorized among the four proposed sense extension types. The study confirmed that

slang senses, like their conventional counterparts, indeed relate to their respective

original senses. Furthermore, the underlying devices of sense extensions are closely

shared, where the same four sense extension devices accounted for a similarly large

portion of both conventional and slang senses. However, Warren also pointed out

differences between conventional and slang sense extension in the manner in which

the sense extension devices are made use of. Namely, the frequency distribution of

the sense extension devices show substantial differences between the two while devices

such as metaphor tend to have a clear tendency of exaggeration when used in slang

extension.

By examining a collection of American campus slang collected from 1972 through

1993 from The University of North Carolina (UNC) at Chapel Hill, Eble (2012) also

described slang as a series of sense acquisition and argues that “it is not merely random

but a cognitively guided phenomenon” where newly acquired senses are semantically

associated with established senses to facilitate communication. The implications of

these findings are twofold. First, similarity in the set of employed sense extension

devices suggests that existing computational models of semantic extension can serve

as a good starting point in modeling slang. At the same time, there exist differ-
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ences between how such devices are applied and the extent to which two senses are

considered as relatable.

1.2.3 Modeling slang

Given the different methods in which a slang usage can be created, one can create

principled computational models of slang that reflect its generative process. I now

discuss the extent to which existing NLP methods can tackle this challenge and

potential limitations with existing methods.

For slang coinage, existing work in NLP has proposed deep learning based models

to predict word formations based on its constituents (Kulkarni and Wang, 2018).

For example, predicting the word mocktail given mock and cocktail. However, the

semantic associations between word forms and slang senses have not been explicitly

modeled. Nevertheless, prominent word formation strategies such as lexical blending

have received careful treatment in the literature (Cook and Stevenson, 2010b; Deri

and Knight, 2015; Gangal et al., 2017; Pinter et al., 2020). Also, existing NLP

models can treat slang coinages as out-of-vocabulary words (OOVs) and a myriad of

techniques have been proposed to produce semantic representations of OOVs (e.g.,

Sennrich et al., 2016; Pinter et al., 2017; Cotterell and Schütze, 2018; Kudo, 2018;

Kudo and Richardson, 2018). Although these techniques have not been systematically

evaluated on slang, they can be readily applied to obtain a semantic representation

for a newly coined slang expression. I review this body of work in Section 2.3.

Unlike the case of coinage, no existing work in NLP has explored the word-meaning

associations in slang reuse.6 Furthermore, simply applying existing models of seman-

tic extension for conventional language change will be limited. The key limitation lies

in the representation of senses using standard sentence embedding techniques that

only capture surface-level similarities. For example, a BERT-based embedder (De-

vlin et al., 2019; Reimers and Gurevych, 2019) would assign similar embeddings to

6In the case of slang reuse, both words and phrases are treated in the same way. That is, both words and phrases
are characterized by the conventional senses attached to them.
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conventional senses of blaze ‘Of outstanding heat’ and ‘Burning brightly’ because

both senses refer to similar concepts describing flame. However, when those conven-

tional senses are compared to the slang sense ‘First-rate, excellent’, the metonymy

manifests a larger semantic gap between the senses which will cause the embedding

model to assign embeddings that are further apart. But since slang has a tendency

to extend senses in more innovative ways, the models can be substantially improved

by accounting for such behavior. In the case of the blazing example, if metonymy is

more common in slang sense extension, then sense pairs that reflect such associations

should be considered semantically close.

Using data from Warren (1992), I show in Chapter 3 that semantic representations

from off-the-shelf NLP representations indeed produce higher semantic distances be-

tween sense pairs from slang sense extension compared to those in conventional sense

extension. To address this gap in knowledge, this dissertation focuses on the modeling

of slang reuse as semantic extension. I show such a semantic model of slang reuse can

be applied to core tasks of slang in NLP.

1.3 Slang in natural language processing

Processing of slang remains a difficult challenge for many commercial systems today.

For example, using Google Translate on the sentence “It makes me steamed when I

run out of money” would incorrectly output ‘Being vaporized’ instead of the correct

meaning ‘Being angry’ for the slang steamed. In this case, the system falls short

because it fails to recognize the correct meaning of the slang steamed. To successfully

address a task such as the machine translation of slang, the system needs to interpret

the correct meaning of steamed. At the same time, it is also desirable for the trans-

lation system to express the concept ‘Being angry’ naturally in the target language,

ideally generating a slang equivalent. In both cases, the system should have the abil-

ity to detect the slang usage so that processing can be triggered on appropriate spans
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of text. Therefore, a successful system must have the ability to perform well in the

following core tasks:

1. Slang Detection: Given a sentence (e.g., “It makes me steamed when I run out of

money”), detect whether a slang is being used in the sentence. If so, identify the

exact position of the slang expression (e.g., steamed). This allows a downstream

task to perform slang-specific processing on the detected expression.

2. Slang Interpretation: Given an identified slang within a sentence (e.g., “It makes

me steamed when I run out of money”), interpret its intended meaning within

the usage context (e.g., ‘Being angry’). This allows the system to obtain the

intended meaning of the slang.

3. Slang Generation: Given an intended meaning to be expressed (e.g., ‘Being an-

gry’), choose a word or phrase (e.g., steamed) to express the intended meaning

as slang. In the case of machine translation, this allows the system to generate

an equivalent slang usage in the target language.

Also, these tasks are not specific to machine translation but are applicable to a

broad spectrum of important NLP tasks. For instance, a sentiment analysis system

would require both detection and interpretation to identify the correct sentiment

connotation of a slang usage. A dialogue system, on the other hand, needs both

detection and interpretation7 when acting as a listener, and proceeds to generation

when it is its turn to speak.

Despite the importance of these tasks, existing work on the natural language pro-

cessing of slang has been focusing primarily on slang detection (Pal and Saha, 2013;

Pei et al., 2019). In the existing slang processing systems, the slang is processed

primarily using its usage context. In other words, relying on distributional seman-

tics (Firth, 1957; Deerwester et al., 1990; Erk, 2016) to infer the meaning of the

7Note that it is possible for an NLP system to perform some of these tasks simultaneously. For instance, a system
can detect slang by simply interpreting the intended meaning of every word/phrase in a sentence. However, it is
possible to detect slang without a precise interpretation. For example, by matching Part-of-Speech-shift patterns that
are frequently employed in slang but not conventional language (Pei et al., 2019).



CHAPTER 1. INTRODUCTION 12

slang (Ni and Wang, 2017). Under this paradigm, both generation and interpretation

of slang are difficult because distributional semantics alone is insufficient in capturing

slang. Consider the sentence “I have a feeling he’s gonna [MASK] himself someday”.

Directly applying a large GPT-2 (Radford et al., 2019) based language infilling model

(e.g., Donahue et al., 2020) would result in the retrieval of kill as the most probable

word choice (probability = 7.7%). However, such a language model is limited and

near-insensitive to slang usage, e.g., ice—a slang alternative for kill (Green, 2010)—

received virtually zero probability, suggesting that existing models of distributional

semantics, even the transformer-type models, do not capture slang effectively, if at

all. While such discrepancies in likelihood may be an indication of surprisal and thus

beneficial in slang detection, it would be difficult to either generate or interpret the

slang ice without an accurate semantic representation that links ice with its intended

meaning ‘To kill’. For this reason, existing methods rely on the distributional context

alone to make an interpretation and forgo information encapsulated in slang terms:

While it is possible to infer the meaning from the context sentence “I have a feeling

he’s gonna [MASK] himself someday”, the semantic association between ‘To kill’ and

the slang word ice (in this case, a metonymy relation) has been disregarded.

For both slang generation and slang interpretation, a semantic representation that

captures the nuanced relations between the conventional and slang meanings of an

expression (e.g., ‘Frozen water’ and ‘To kill’ respectively for the word ice) is thus cru-

cial. Using deep learning based embedding methods, I reinforce the findings of Warren

(1992) that slang semantic extension treats sense association differently compared to

conventional sense extension. Because of this, NLP models trained on conventional

language (including models of distributional semantics) will not generalize well on

slang as they only capture surface-level similarities between two meanings. I address

the under-representation problem by applying contrastive learning (Baldi and Chau-

vin, 1993; Bromley et al., 1993; Chopra et al., 2005; Weinberger and Saul, 2009) on a

large collection of slang dictionary entries to automatically extract patterns of seman-
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tic extension attested in the data. In this dissertation, I show how such a semantic

representation of slang can be applied to enhance both generation (Chapter 3) and

interpretation (Chapter 4) of slang under a principled computational framework.

The discussion thus far assumes that slang usages are universally defined for all lan-

guage users. However, the use of slang varies substantially across different groups of

users. For example, a significant portion of slang usages are regional (Green, 2010),

necessitating modeling approaches that produce results tailored to each individual

region. In Chapter 5, I show that slang varies much more across different regions

compared to conventional language. However, the cause and behavior of such varia-

tion in slang usage are not well understood at a macroscopic level. That is, existing

linguistic work often delineates a small but carefully studied sample of slang within

individual communities of interest (e.g., Denis, 2021), but how slang behaves as a

whole is poorly understood. Recent interest in social media analysis has expanded

the scope to explore large samples of slang usage in online settings, studying two

modes of variation pertinent to slang:

1. Lexical Variation: The difference in word choice for the same to-be-expressed

meaning. For example, both blazing and massive are used to express excellence,

but blazing is typically used in the US and massive is used in the UK.

2. Semantic Variation: The difference in meaning expressed by the same word form.

For example, the same word blazing means ‘First-rate, excellent’ in the US but

is used to express ‘Being angry’ in the UK.

Prior work on slang variation has primarily focused on lexical variation of online

language (Altmann et al., 2011; Eisenstein et al., 2014; Nguyen et al., 2016; Del Tredici

and Fernández, 2018; Stewart and Eisenstein, 2018). Work on semantic variation

of slang has been sparse in comparison (Del Tredici and Fernández, 2017; Lucy and

Bamman, 2021; Keidar et al., 2022). Here, existing work focuses on the quantification

of semantic variation and/or determining its causes but does not describe or model
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the underlying processes. Chapter 5 of this dissertation shows how a semantic model

of slang can be applied to directly model slang semantic variation. By doing so, I

show how the model can be applied to predict the regional identity of slang while also

being able to reveal theoretical insights on semantic variation of slang.

1.4 Key modeling challenges

Processing of novel slang is no easy task even for humans, with studies showing

that interpretation (Braun and Kitzinger, 2001) and translation (Mattiello, 2009) of

unfamiliar slang to be much more difficult than conventional language. Although ma-

chines have the advantage of observing much more data than humans, the automatic

processing of slang remains a challenging task due to slang’s inherent characteris-

tics. Here, I elaborate on how defining characteristics of slang makes its modeling

practically challenging in NLP.

First, the use of slang is innovative and involves a rich set of generative strategies

including but not limited to metaphor, metonymy, amelioration, and irony (War-

ren, 1992; Eble, 2012). Each extension strategy by its own right raises challenging

problems in natural language processing (e.g., Cook and Stevenson, 2010a; Veale

et al., 2016; Magu and Luo, 2018). Also, distributional semantics models such as

Word2Vec (Mikolov et al., 2013) and BERT (Devlin et al., 2019) are trained primar-

ily on literal text and thus only capture surface-level similarities between meanings.

A pair of metaphorically related senses, for example, may not be considered similar

as senses that have distant surface meanings would have been seen in very different

contexts during training.

Next, newly created slang usages tend to be ephemeral (Sornig, 1981; Eble, 1989;

Tagliamonte and Denis, 2008). As a result of this, the set of slang in which an NLP

system needs to handle can change rapidly in a short amount of time. Therefore,

a practical system has to be capable of processing slang that is potentially unseen
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or rarely observed in training data, often resulting in a few-shot learning scenario.

Many existing systems that rely on lexicons built on slang dictionaries (e.g., Pal

and Saha, 2013; Dhuliawala et al., 2016; Gupta et al., 2019; Wilson et al., 2020) are

therefore insufficient in this regard. Similarly for deep learning based methods, data

memorization cannot generalize to novel slang. Although large language models such

as GPT-3 (Brown et al., 2020) can memorize slang usages seen during training, the

handling of novel slang would require the model to be continuously trained and would

incur high financial and environmental cost (Bender et al., 2021).

Another characteristic of slang affecting practical systems is its informality (Spears,

1981; Landau, 1984). Existing NLP approaches rely on large training corpora derived

from sources such as Wikipedia8 and Common Crawl9 which are composed of formal

documents such as news articles and wiki pages. Because of this, models observe

formal language use much more frequently during training. Informal language such

as slang is thus severely under-represented in the data and the result is twofold. First,

when facing a tradeoff between performing well on formal versus informal language, a

general purpose NLP model will prioritize the former during training because formal

language makes up a much larger proportion of the training data. However, finetuning

a model directly on informal usage will likely result in much inferior performances

on formal language. Second, examples on informal uses of language are scarce even

though large neural network based models require large amounts of data to learn

effectively (Thompson et al., 2020). This either makes the automatic processing of

slang a low-resource problem which necessitates efficient learning or forces the use

of large but noisy data sources such as the Urban Dictionary (cf. Swerdfeger, 2012;

Nguyen et al., 2018).

Finally, the creation and use of slang are contextually motivated and often re-

flect group membership (Labov, 1972; Mattiello, 2005; Labov, 2006; Slotta, 2016),

a hallmark feature of slang distinguishing it from other types of informal language.

8http://en.wikipedia.org
9http://commoncrawl.org

http://en.wikipedia.org
http://commoncrawl.org
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This may include, for example, the need to communicate a particular concept in a

social group (Sornig, 1981) or the creation of new language to reinforce group cohe-

sion (Mattiello, 2005; Eble, 2012). It is thus important but also potentially beneficial

for an NLP system to account for these auxiliary features. For example, if the demo-

graphic identity of a user is known to the system, the system may provide a response

tailored to the particular identity of the user (e.g., the same slang word blazing means

excellent in the US but is used to express anger in the UK). Apart from the utility

aspect, it is also important to consider potential biases and harm a system may in-

troduce as a result of such distinction. For example, if the NLP system performs well

in interpreting blazing when it is used to express excellence but not anger, then the

system has a performance bias against UK users.

In summary, an effective NLP system for slang addressing these challenges should

have the following characteristics:

1. Representation of slang semantics: Representing the semantic extension from

existing conventional senses to a slang sense, extending the system’s capability

to allow the processing of both cases of coinage and reuse.

2. Generalization to novel slang: The system should be able to process slang that’s

potentially novel, meaning that it is not already captured or rarely seen in an

existing database.

3. Efficiency in learning slang: Data sources containing large numbers of high-

quality slang usages are often not readily available. An effective NLP approach

needs to extract information efficiently in a low-resource setting.

4. Contextualization of slang: The NLP system should be aware of the context in

which the slang is being used. For example, the same slang used in different

socio-demographic context may convey different meanings.

This dissertation will hence describe principled approaches that integrate the above

characteristics into natural language processing systems for slang. Chapter 3 builds a
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Figure 1.1: The main contributions of this dissertation. Chapter 3 on the generative modeling of
semantic extension and word choice of slang; Chapter 4 on applying model of semantic extension
of slang for automatic interpretation and Chapter 5 on modeling the regional semantic variation in
slang.

computational framework of semantic representation of slang to allow generalization

toward unseen slang. Chapter 4 applies the framework to interpret novel slang usages

in a data-efficient method. Finally, Chapter 5 considers the contextualization of slang

by exploring regional variation in slang semantics.

1.5 Main contributions

This dissertation contributes a novel model of slang semantic extension and shows

how such a computational framework can be applied towards the generation, inter-

pretation, and translation of slang and the modeling of semantic variation of slang

across different communities. While existing NLP work in modeling word formations

can potentially address the processing of slang coinage, no formal models have been

proposed to model the semantics of slang reuse. Instead, previous NLP approaches

to slang implicitly assume that slang semantics is arbitrary in nature and does not

account for the many generative patterns discerned in previous linguistic literature

on slang. By adapting models of word sense extension, I show how slang reuse can

be computationally modeled as an extension process between a word’s original con-

ventional senses and its novel slang senses. Furthermore, the results show that there

indeed exist regularities in slang semantic extension that can be learned from data.
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Building upon these findings, this dissertation shows how the modeling of slang se-

mantics can benefit important NLP tasks such as the generation, interpretation, and

translation of slang which have been sparsely studied due to their sheer difficulty.

Finally, I illustrate how the semantic variation of slang can also be modeled as a pro-

cess of semantic extension, an application of which allows the inference of a slang’s

regional identity. Figure 1.1 illustrates an example of the processes being modeled.

The modeling of slang as semantic extension improves existing approaches to au-

tomatic slang processing which rely heavily on distributional semantics, where the

semantic content of the slang expression itself is often ignored. For example, inferring

the meaning of the slang blazing using only the context sentence “Good purchase, that

jacket is blazing”. Such distributional semantics based models do not fully leverage

information encapsulated in the word blazing where its slang sense shares semantic

association with conventional senses of blazing. In the simplest application of distri-

butional semantics, the model makes no distinction between the word blazing and any

other alternatives, even if the alternative slang words convey very different meanings.

My work shows how a standard distributional semantics based embedding model can

be warped to capture patterns of slang sense extension by applying efficient con-

trastive finetuning on dictionary data. I show how the learned embeddings capture

semantic relations beyond surface-level similarities reflected in existing distributed

semantic models and how such representations lead to substantial improvements in

both automatic generation and interpretation of novel slang.

1.6 Overview of dissertation

Chapter 2 reviews the existing literature on work related to NLP for slang to provide

a bird’s-eye view of the existing capabilities and shortcomings. I will also review

research areas that are closely related to slang and discuss how existing approaches

in these areas can be applied to slang.



CHAPTER 1. INTRODUCTION 19

Chapter 3 addresses the generalization and under-representation of slang by au-

tomatically extracting patterns of semantic extension pertinent to slang from a large

collection of slang dictionary entries. The resulting semantic representations allow

the comparison of senses beyond surface-level similarities. For example, the senses

‘Burning brightly’ and ‘First rate, excellent’ are dissimilar in their literal meanings

but are brought closer together in the resulting representation space if the association

between force and excellence is a commonly observed semantic extension pattern dur-

ing training. The extracted semantic extension patterns also generalize beyond the

usage cases observed in our dictionaries, allowing them to be applied against novel

slang usages unseen during training.

Chapter 4 shows a data-efficient approach to zero-shot slang interpretation. I show

that by combining both semantic information from a generative semantic model of

slang and contextual information from large language models (LLM), it is possible

to achieve better predictive accuracy, without task-specific training, than a sequence-

to-sequence network (Sutskever et al., 2014) trained on a large collection of Urban

Dictionary entries (Ni and Wang, 2017). Furthermore, the inclusion of a semantic

model of slang allows better representation and generalization of slang usage and

results in improved interpretation accuracy when combined with both the LLM and

sequence-to-sequence based contextual interpreters. I also show potential improve-

ments the slang interpreter can make in machine translation of slang.

Chapter 5 explores the contextualization of slang and how it may affect the perfor-

mance of natural language processing systems. I present a first study in this direction

by quantifying and modelling the regional semantic variation that exists in slang us-

age. The experiments show that both lexical and semantic variation are prominent

in slang usage. Furthermore, semantic variation in slang can be explained by func-

tions of communicative need (Sornig, 1981) and semantic distinction (Mattiello, 2005;

Eble, 2012) within social groups. I show how such knowledge can allow the automatic

inference of a user’s demographic region using models of semantic variation for slang.
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Chapter 6 gives a summary of the contributions on slang NLP and how they

address the outlined challenges. I will also describe exciting and promising avenues

of future research in slang NLP.



Chapter 2

Related work

2.1 Overview

In this chapter, I survey the existing literature to bring a birds-eye view of existing

NLP work related to slang. Work on natural language processing for slang has been

relatively sparse and remains an underrepresented area in the literature. Existing

NLP work on slang focuses primarily on its automatic detection without principled

modeling of slang semantics. Specifically, these approaches often treat slang as a

black box and do not take advantage of the theoretical insights uncovered by previous

work. In Section 2.2.1, I review the existing NLP approaches to slang based on both

dictionary retrieval and deep learning.

Although slang itself has been relatively understudied in NLP, work in other areas

of NLP indirectly relates to or addresses some challenges faced in NLP for slang. For

example, existing work in computational social science often studies the variation in

online language found in social media. Much of the language studied overlaps with

slang and the field has made considerable progress in discerning the linguistic and

social variables that dictate the behavior of such language. Section 2.2.2 will review

this line of work.

The NLP community has also spent a tremendous effort on accurately representing

out-of-vocabulary words (OOVs). This is especially relevant to slang as a good portion

21
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of slang involves coinage (Sornig, 1981). Although this dissertation focuses on the

understudied case of reuse, a review of the existing NLP work that is potentially

applicable to slang coinage will be given for completeness. Section 2.3 will review

existing NLP work on lexical blending, one of the most prominent word formation

processes used in slang (Mattiello, 2005; Eble, 2012; Kulkarni and Wang, 2017), as

well as general purpose OOV models that do not make specific assumptions about

word structure.

Since this dissertation makes extensive modeling of slang-reuse as a phenomenon

of semantic extension, I will introduce in Section 2.4 the necessary background and

related work on the computational modeling of semantic extension. Here, I focus on

semantic chaining models based on cognitive models of categorization, an important

methodology that will be applied in later chapters of this dissertation.

Finally, Section 2.5 outlines the available large-scale data resources for slang. In

doing so, I discuss the advantages and limitations of such data sources and why certain

datasets are selected for both training and evaluations.

2.2 Computational studies of slang

2.2.1 Automatic processing of slang

2.2.1.1 Dictionary-based approaches

Most existing approaches in the natural language processing for slang focus on ef-

ficient construction, extension, and retrieval from dictionary-based resources. The

resulting slang database is then relied upon for all downstream tasks (e.g., detection,

interpretation). However, many entries from large dictionaries such as the Urban

Dictionary (UD) may be of poor quality (Swerdfeger, 2012). Therefore, a common

theme in such approaches is to control or improve the quality of the database while

attempting to generalize its existing entries to the furthest extent.
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Pal and Saha (2013) described a dictionary-based slang retrieval system focusing

on the task of slang detection. First, they constructed a database of slang the user

is interested in detecting. During test time, each incoming word in the text is then

checked against all entries in the database, with an additional module that matches

sounds-alike words (e.g., alpa would be matched against alpha). The system assumes

that any sounds-alike word being used in a diverse set of contexts is likely a slang.

Specifically, if such a word has been used along many different context words, the

system adds the novel slang into the slang database as a way to account for unseen

slang.

Dhuliawala et al. (2016) proposed an annotation scheme to control the quality of

Urban Dictionary entries. In their proposed ‘SlangNet’ database, only UD entries

attested in a Reddit message would be extracted. To do so, sentences are first ex-

tracted from a Reddit crawl. For each word in the sentence that does not appear

in WordNet (Miller, 1994) (i.e. coinage), the top definition from UD is taken as its

definition. For all other content words (i.e. possible reuse), tag words1 from the cor-

responding UD entries are matched with conventional senses of the word in WordNet

using bag-of-words overlap. If no match has been found, then the same matching

process is applied to sense entries of the word in UD. The set of matching UD senses

is then used as annotation candidates where the annotators could choose one of the

candidate senses or write their own definition.

Wu et al. (2018) constructed a sentiment lexicon of slang by labeling lexical entries

found in Urban Dictionary. They begin the sentiment labeling process by beginning

with a small set of seed words that are also available in exisiting sentiment lexicons

such as SentiWordNet (Baccianella et al., 2010), LIWC (Pennebaker et al., 2001),

and MPQA (Deng and Wiebe, 2015). The sentiment scores are then propagated

successively using Twitter sentences and UD metadata. Words that co-occur in tweets

are assumed to share similar meaning, thus similar sentiment. Similarly, words that

1the authors claim that this is a set of words that relates to either the conventional or slang senses of the word.
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are labeled as “related” in UD are given similar sentiment ratings. The propagation

method also allows the automatic labeling of new word lists from UD, enabling the

system to generalize towards unseen words.

Gupta et al. (2019) introduced a fuzzy-logic (Zadeh, 1965) based algorithm to refine

definition rankings given in Urban Dictionary. Whereas UD ranks all definitions for

a given word solely on the differences between the number of upvotes and downvotes,

the proposed SLANGZY algorithm considers additional features such as the definition

length and average upvotes across all definitions in a word. The final ranking is

then produced by taking a weighted average of the feature scores where the authors

recommended a set of manually tuned weights.

The key disadvantage of dictionary-based systems is that they fail to generalize

beyond what was available in the training data, even if all dictionary entries are of

high-quality. This makes such systems futile in the face of unseen slang. However,

one of the key challenges in processing slang is how ephemeral slang usages are (Eble,

1989), making it important for NLP systems to be able to process unseen slang that

will not necessarily be accurately recorded in a dictionary in a timely manner. The

methods proposed in these dictionary-based approaches are often based on heuristics

and have not been evaluated carefully in large-scale experiments.

2.2.1.2 Deep learning based approaches

With the popularization of deep learning, recent NLP work on slang has been tackling

the generalization issue using data-driven approaches. Namely, the development of

systems that can process unseen slang words or meanings by generalizing examples

of slang usage from the training data.

Ni and Wang (2017) formulated English slang interpretation as a translation task

(although they did not tackle slang machine translation per se). In this work, each

slang query sentence in English is paired with the ground-truth slang definition (also

in English), and such pairs are fed into a translation model. In addition, the spellings
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That salsa … itLinguistic Features

LSTMThat LSTMsalsa LSTMitBiLSTM Layer …

MLP or CRFOutput Layer

BIO tag BIO tag BIO tag…

Figure 2.1: Illustration of Pei et al. (2019)’s neural architecture for slang detection.

of slang word forms are also considered as input. The proposed neural network

encodes both the usage context and the slang form using separate Long short-term

memory (LSTM) encoders (Hochreiter and Schmidhuber, 1997). The two encoded

representations are then linearly combined to form the encoded input for a sequence-

to-sequence network (Sutskever et al., 2014). During training, the combined state is

passed onto an LSTM decoder to train against the corresponding definition sentence.

During test time, beam search (Graves, 2012) is applied to decode a set of candidate

definition sentences. Yi et al. (2019) showed that a similar architecture can be applied

to process Chinese slang. Instead of encoding the slang form’s individual characters,

phonetics of the words are encoded instead.

Pei et al. (2019) developed a deep learning based approach for automatic detection

and identification of slang. Illustrated in Figure 2.1, the proposed end-to-end neural

architecture first encodes word-level information and relevant linguistic features using

an LSTM network. A conditional random field (Lafferty et al., 2001) is then imposed

onto the LSTM network to make sequence-level predictions. They found that while

an end-to-end neural-network based approach is effective, linguistic features such as

contextual surprisal also play an important role in improving slang detection accuracy.
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Wilson et al. (2020) trained fastText (Bojanowski et al., 2017) embeddings by

treating Urban Dictionary entries as text documents. The resulting embeddings were

shown to capture non-standard semantic relationships between words. In particu-

lar, the authors have identified examples in which the model implicitly generalizes

towards unseen slang by combining fastText embeddings of the unseen word’s con-

stituent subwords. In the case of word reuse, however, the resulting embeddings do

not distinguish between conventional and slang meaning and can potentially capture

either.

All of these approaches directly apply machine learning models without building

an explicit semantic representation for slang. Instead, the models rely on the distribu-

tional context. Specifically, Ni and Wang (2017) encoded the surrounding linguistic

context directly using an LSTM encoder; Pei et al. (2019) collected information from

the context via a conditional random field; And Wilson et al. (2020) directly applied

the skipgram objective. However, distributional semantics is insufficient in capturing

slang meanings faithfully. In Chapter 3, I show how linguistically and cognitively

principled knowledge can be leveraged to explicitly model slang semantics beyond

distributional semantics.

Although existing deep learning based methods have shown promise in generaliza-

tion towards unseen slang, none of these approaches have incorporated architectural

changes that are tailored towards slang. The lack of inductive bias makes these

approaches data-hungry in a learning setting where high-quality data is scarce. In

Chapter 3, I show how semantic knowledge can be efficiently extracted from high-

quality dictionary data. Furthermore, I show in Chapter 4 how such knowledge can

be applied to efficiently improve the performance of automatic slang interpretation

and translation.
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2.2.2 Slang variation

Slang has been extensively studied as a social phenomenon (Mattiello, 2005), where

social variables such as gender (Blodgett et al., 2016), ethnicity (Bamman et al.,

2014b), and socioeconomic status (Labov, 1972, 2006) have been shown to play im-

portant roles in shaping slang. Recent surge in the interest of online social media

text analysis has seen much prominent work in computational social science studying

the characteristics of online language use. Online language is especially relevant to

slang as language innovations originated from online communities (e.g. subreddits)

have been generally regarded as slang (Del Tredici and Fernández, 2018).

Much of the earlier work focuses on the lexical variation of online language studying

the differences in word choice among different online communities (Altmann et al.,

2011; Eisenstein et al., 2014; Nguyen et al., 2016). More recently, it has also been

shown that social variables can predict the popularity and dissemination of lexical

innovations in online language. Del Tredici and Fernández (2018) studied a collection

of 7,962 Internet slang found across 20 Reddit communities. They showed that apart

from linguistic features, slang used by innovators who have stronger ties within a

community is more likely to be widespread in the community compared to those

used by weakly tied users. Stewart and Eisenstein (2018) also examined how both

linguistic and social properties of Reddit slang affect their success. Words that can

be used in more diverse contexts are found to be more successful in terms of usage

frequency. Meanwhile, social ties corresponding to users of the slang are found to be

relevant but less significant.

Aside from lexical variation, prior work has also explored the semantic variation

of online language: Whether different communities adopt different meanings for the

same word? Bamman et al. (2014a) proposed a word2vec (Mikolov et al., 2013) based

distributed semantic model to automatically capture community-specific meanings of

words. The embedding of a word is the result of combining a global representation

and a community-specific representation. The latter is trained using only sentences
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from the corresponding community while the former uses all available data. The

resulting community-specific embeddings allow the differentiation of meaning across

different groups of users.

Applying such methodology, studies have been proposed to quantify the amount of

semantic variation in online communities. Del Tredici and Fernández (2017) adapted

Bamman et al.’s (2014a) distributive embedding model to train community-specific

word embeddings for a small set of Reddit communities and quantified semantic vari-

ation by comparing cosine similarities between community-specific embeddings for

the same word. Lucy and Bamman (2021) extended the previous study to quan-

tify semantic variation of online language in 474 Reddit communities. They com-

pared PMI-based sense specificity of clustered BERT (Devlin et al., 2019) embed-

dings generated using different contextual instances of a word’s usage, along with

an alternative strategy that uses BERT to predict word substitutions from the same

usage instances (Amrami and Goldberg, 2019). Lucy and Bamman also proposed

a regression-based model of semantic variation with community-based features (e.g.,

community size, network density) as well as topical features derived from Reddit’s

subreddit hierarchy.

While community-based features are found to be informative in predicting the

strength of semantic variation, the above studies do not explicitly model how slang

senses vary. Keidar et al. (2022) performed a causal analysis of semantic change of

slang using tweets from 2010 to 2020. Slang’s usage frequencies were found to change

more drastically than those of conventional language while the semantic change for

stable senses progresses much slower. In Chapter 5, I detail my work on modeling

the driving forces behind semantic variation of slang. Instead of predicting the causes

of semantic variation, my work takes a more direct approach by modeling how slang

senses vary. I do so by performing an extended analysis studying attested slang usages

over the past two centuries instead of focusing on contemporary Internet slang.
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2.3 Models of word formation

A substantial effort exists in the NLP community to address the out-of-vocabulary

words (OOVs) problem: The processing of words that are not part of a standard

vocabulary. Although most existing work does not focus on slang specifically, many

methods are potentially applicable to process slang coinage.

2.3.1 Lexical blending

Earlier work in addressing OOVs emphasizes specific word formation processes that

are commonly observed. One example of which is lexical blending, a process which, in

its simplest form, combines the prefix of a source word (e.g., breakfast) and the suffix

of another (e.g., lunch) to create a new word form (e.g., brunch). Blends are also of

particular interest in the context of slang because it is one of the most frequent word

formation processes observed in slang coinage (Mattiello, 2005; Eble, 2012; Kulkarni

and Wang, 2017). Work on lexical blending focuses on decomposing the blended word

into its source words, thus allowing some degree of explanation in word interpretation.

Cook and Stevenson (2010b) proposed the first statistical approach to automati-

cally identify source words of a lexical blend in English. Given a word w, they first

identified all pairs of words w1, w2 such that it would be possible to orthographically

combine w1 and w2 to arrive at w. Each pair of candidate words are then scored using

a set of linguistic features including the frequency, length, phonology, and semantic

relatedness of the candidate words. Furthermore, the authors applied this approach

to automatically detect lexical blends in text. Here, the premise is that feature scores

assigned to a blend’s source word pair would be much higher than that of a non-blend.

Ek (2018) applied a similar approach on Swedish blends using static word embeddings

instead as semantic features and found similar sets of features to be effective.

Another line of work applies data-driven approaches to explicitly model the gener-

ative process behind blending. The generative model can then be applied to infer the
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source words of a blend. Deri and Knight (2015) proposed a finite-state transducer

(FST) to model the blending process. Trained using examples from Wikipedia and

Wikitionary, the FST predicts 1,000 candidate source pairs with top probabilities

for each blend. The resulting pairs are then reranked using logitistic regression with

features similar to those of Cook and Stevenson (2010b). Gangal et al. (2017) applied

deep learning methods to model the blending process using a sequence-to-sequence

with attention based architecture that encodes two source words and decodes the

blend. In addition, a noisy-channel model was imposed to incorporate a character-

level language model into the framework. Kulkarni and Wang (2018) proposed a

simpler neural architecture by modeling blending as a sequence labeling task. In

their proposed task, the source words are placed in a string (e.g., ”breakfast#lunch”)

and a simple LSTM network is trained to output a string indicating which characters

to keep (e.g., CCDDDDDDDDDCCCC for brunch, where C refers to kept characters

and D refers to deleted ones). This approach does not perform as well as that of

Gangal et al. (2017) but is much more efficient. Aside from blends, Kulkarni and

Wang (2018) also proposed neural architectures to model clippings and reduplica-

tives, both of which are also common patterns of slang form extension (Eble, 2012)

but are sparsely studied in NLP.

Pinter et al. (2020) applied BERT (Devlin et al., 2019) based models to auto-

matically segment and recover the source words of blends. They observed that while

conceptually similar, BERT represents compounds and blends very differently. Specif-

ically, the semantic similarities between the source and composed words’ BERT rep-

resentations are much smaller for blends, suggesting more complex semantic shift

processes. Furthermore, common tokenization schemes used in BERT-based systems

(e.g., WordPiece; Schuster and Nakajima, 2012; Wu et al., 2016, BPE; Sennrich et al.,

2016) often cannot find the correct segmentation boundary in blends. Even with the

correct segmentation, Pinter et al. (2020) showed that automatically recovering source

words for a blend remains a very challenging task even with large contextualized mod-
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els like BERT.

2.3.2 Modeling out-of-vocabulary words

As an alternative approach to modeling specific word formation processes, one can

assume that all out-of-vocabulary words follow some form of compositional structure.

Although the learning process becomes inevitably more difficult, models under this

paradigm can generalize towards more words instead of confining to certain types of

OOVs (e.g., blends).

A common technique is to decompose an OOV word into a set of subwords. Em-

beddings are then learned for each subword unit and a representation is obtained

for an OOV word by additively combining embeddings of all constituent subwords.

Botha and Blunsom (2014) decomposed words into morphemes using the automated

system Morfessor (Creutz and Lagus, 2007). Similarly, Wieting et al. (2016) con-

structed OOV embeddings by combining embeddings of all character n-grams found

in the word. Sennrich et al. (2016) adapted Byte-Pair Encoding (BPE; Gage, 1994)

to automatically construct a vocabulary of subword units in which embeddings will

be learned. Instead of determining subword units linguistically, the vocabulary is ob-

tained by finding the most-frequent character sequences in a corpus. This results in a

vocabulary of variable length character sequences and each OOV word can be morpho-

logically decomposed into a series of subword units from the vocabulary. Follow-up

work (Kudo, 2018; Kudo and Richardson, 2018) extended this idea by incorporating a

unigram language model that outputs a probability distribution over all possible sub-

word segmentations. The resulting embedding then takes consideration of all possible

segmentations and this has been shown to be an effective regularizer. Provilkov et al.

(2020) achieved similar effect with BPE by modifying it into a stochastic procedure.

This can be achieved by randomly dropping out a BPE merging step with a small

probability.

Instead of additively combining subword representations, methods have been pro-
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posed to learn compositional functions to obtain better embeddings. Ling et al. (2015)

proposed a simple embedding method by decomposing all words into characters. A

bidirectional LSTM encoder then encodes the sequence of character embeddings to

decode a resulting word embedding. Bhatia et al. (2016) applied probabilistic graphi-

cal modeling by treating embeddings of an OOV word’s morphological decomposition

as a prior distribution of the output embedding. Variational inference is then applied

to the resulting graphic model to optimize the embedding parameters. Cotterell and

Schütze (2018) proposed a probabilistic framework that jointly considers the mor-

phological composition and semantic coherence of the resulting composition. In their

composition model, seven different composition functions have been experimented

with and vanilla RNNs (Elman, 1990) generally achieved the best performance.

A key limitation of these approaches is that the embedding schemes merely modify

the input level of a downstream neural architecture instead of filling in lexical gaps

in existing embeddings. This means that all embeddings must be retrained, includ-

ing those high-quality embeddings from well-known in-vocabulary words. To address

this modeling issue, two solutions have been proposed. First, the incorporation of

subword information into the word embedding training schemes. The fastText em-

bedding (Bojanowski et al., 2017) does this by injecting subword structure into the

skipgram objective. Similar to that of Wieting et al. (2016), each word is decom-

posed into the set of possible n-gram substrings between length of 3 and 6 inclusive.

Vector representation for each n-gram is then checked against those of the context to

compute the objective score. An alternative solution proposed by Pinter et al. (2017)

is to train a character-level neural network with a set of pretrained embeddings as

the network’s decoding objective. The network encodes all in-vocabulary words us-

ing a bidirectional LSTM encoder and trains the resulting embeddings against a set

of pretrained vectors. The character-level encoder would then generalize towards

OOV words, allowing embeddings for OOVs to be obtained while retaining the same

embedding space from large-scale pretraining.
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2.4 Computational studies of semantic extension

Novel slang senses, like their conventional counterparts, can be viewed as a result

of semantic extension from previously attested senses of a given word. Since slang

sense extension shares the same mechanisms, existing word sense extension models

for conventional language serve as a good starting point in modeling slang reuse.

Earlier work has explored the automatic identification of novel word senses via

outlier detection (Erk, 2006), with later methods attuned to identify specific types of

change such as widening/narrowing (Sagi et al., 2009) and amelioration/pejoration (Cook

and Stevenson, 2010a). Cook and Hirst (2011) constructed synthetic examples to eval-

uate novel sense identification of infrequent senses and proposed novel similarity and

dissimilarity metrics to quantify differences in word senses across two corpora. Follow-

up work applied both word-sense disambiguation (WSD) and word-sense induction

(WSI) methods to automatically identify novel sense usages (Bamman and Crane,

2011; Lau et al., 2012; Cook et al., 2013, 2014; Mitra et al., 2014, 2015). For example,

Lau et al. (2012) applied an unsupervised topic model and Mitra et al. (2014) used

graph clustering to cluster the usage instances of a word by the invoked sense.

Aside from detection, the extent of semantic change over time has also been quan-

tified. Using Google Ngram (Michel et al., 2011), Gulordava and Baroni (2011)

presented the first large-scale quantification of semantic change. In their experiment,

a co-occurrence matrix is constructed using bigram context and the resulting entries

are used to measure semantic similarity, capturing distributional semantic informa-

tion about a word. The resulting dichronic vectors are then compared to quantify the

extent of semantic change. Kulkarni et al. (2015) combined frequency, syntactical,

and word embedding based features to perform change point detection in discern-

ing change in word meaning across time. Later work extended such methodology to

discover common patterns in sense extension across history (Xu and Kemp, 2015;

Hamilton et al., 2016).
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(a) Prototype

(b) Exemplar

(c) One Nearest Neighbor
(1NN)

Figure 2.2: Illustration of categorization models. Red (bottom-left) dot denotes novel sense. Blue
dots denote existing senses of a candidate word. Green dot denotes prototype (or mean) of the
existing senses.

The sense extension process in conventional sense extension has also been explic-

itly modeled, for example, using graph based methods (Mitra et al., 2014, 2015) and

Bayesian modeling (Frermann and Lapata, 2016). More recently, cognitively princi-

pled models of semantic extension have been proposed (Ramiro et al., 2018; Habibi

et al., 2020). Specifically, a word is considered a linguistic category and its set of

senses as members of the category. The association between words and senses is then

modeled using cognitively motivated models of categorization.

The premise behind the framework of Ramiro et al. (2018) is that linguistic cate-

gories exhibit rich internal structure that resembles human categorization. One such

theory is the prototype theory by Rosch (1975), illustrated in Figure 2.2a, in which a

prototypical representation is derived from all members in the category. The resulting

prototype is then compared to the stimuli to quantify the appropriateness between

the category and the stimuli. An alternative theory to that of Rosch is the exemplar
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theory by Nosofsky (1986), illustrated in Figure 2.2b. Under the exemplar theory,

all members of the category are considered when evaluating a stimuli. Ramiro et al.

(2018) also explored the use of One Nearest Neighbor model, illustrated in Figure 2.2c,

which resembles Prim’s algorithm for finding the shortest distance minimum spanning

tree within a graph. It is worth noting that such categorical structure has also been

incorporated into recent deep learning architectures for few-shot learning, including

the use of both One Nearest Neighbor (Vinyals et al., 2016) and prototype (Snell

et al., 2017).

In the context of word sense extension, the stimulus is a novel sense in question and

each category represents an existing word form. Within each category, its members

represent the existing repertoire of senses the word has acquired in the past. Under

this framework, an existing word with senses that are more closely related to a new

sense is more likely to be extended to express the new sense. This process is known

as chaining (Lakoff, 1987; Bybee et al., 1994; Malt et al., 1999; Sloman et al., 2001)

and has been shown to effectively model various types of linguistic categories (Xu

et al., 2016; Ramiro et al., 2018; Habibi et al., 2020; Ferreira Pinto Jr. and Xu, 2021;

Grewal and Xu, 2021; Yu and Xu, 2021). Slang sense extension can also be modeled

as a process of chaining using models of categorization. However, it would be naive to

assume that the similarities between slang and conventional senses can be compared

in the same way as in conventional sense extension. I show in the next chapter

how this issue can be alleviated by automatically learning slang-specific patterns of

semantic extension from slang dictionary entries.

2.5 Slang data sources

The training and evaluation of natural language processing (NLP) systems require

large-scale data sources that contain high-quality descriptions of slang usage. In this

section, I explore the existing large-scale digitized slang data sources and discuss
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Dataset # entries Definitions Context Demographics Releasable

The Online Slang 11,021 Yes Yes No No
Dictionary (OSD)

Green’s Dictionary 67,026 Yes No Yes No
of Slang (GDoS)

Urban Dictionary (UD)
- Kaggle 2,580,925 Yes No No Yes
- Ni and Wang (2017) 982,281 Yes Yes No Yes

Reddit Glossaries 4,189 Yes No Yes Yes
(Lucy and Bamman, 2021)

Table 2.1: Summary of datasets for English slang in natural language processing, including the avail-
ability of definition sentences, usage contexts, demographic tags, literal paraphrases, and whether
the dataset can be publically released.

their advantages and shortcomings. Table 2.1 summarizes the existing data sources

for slang available on the Internet.2 All the shown data sources are dictionary style

datasets where each data entry contains a word/phrase (e.g. blazing) and a definition

sentence for a slang sense (e.g, ‘First-rate, excellent’). In addition, some datasets also

provide context sentences in which the slang is being used (e.g. “Good purchase, that

jacket is blazing”) and/or demographic information associated with the slang usage

such as year, region, and community of emergence.

Urban Dictionary (UD) is arguably the most well-known data source for slang.

UD is advantageous in its sheer size, providing data in a scale that is much larger

compared to alternative resources. However, the data is also plagued by poor quality

control due to its unmonitored nature. Swerdfeger (2012) outlines potential issues in

using Urban Dictionary as an academic source. For example, the only quality control

in Urban Dictionary is the user generated upvotes and downvotes. While such voting

schemes can work well for well-known slang with widespread public knowledge, it is

difficult to achieve consistent quality for less frequent slang used in niche communities

since fewer users have the expertise to judge the quality.

Two subsets of the UD have been openly released to the public. The first of which

is available on Kaggle.3 The Kaggle subset is the largest publically available subset

of UD containing more than two million entries. Each data entry in this subset also

2See Appendix A for more details regarding the access of data.
3https://www.kaggle.com/datasets/therohk/urban-dictionary-words-dataset

https://www.kaggle.com/datasets/therohk/urban-dictionary-words-dataset
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contains the number of user upvotes and downvotes recorded when the data was

retrieved. Such information allows the data entries to be filtered for better quality

control. A limitation of the Kaggle subset is that no context sentences are available

for the data entries. Ni and Wang (2017) provide a smaller subset of UD4 containing

original context sentences provided by UD users. However, the provided dataset does

not contain user votes and UD context sentences tend to be of poor quality.

Alternative online dictionary resources such as The Online Slang Dictionary (OSD)

and Green’s Dictionary of Slang (GDoS; Green, 2010) contain higher quality data en-

tries but are much smaller in size. For OSD, user submitted entries are manually

reviewed by the site administrator and GDoS is an authoritative dictionary authored

by a professional lexicographer. Fortunately, these datasets are sufficiently large for

training and evaluating models for many important tasks such as the detection (Pei

et al., 2019), generation (Chapter 3) and interpretation (Chapter 4) of slang. Al-

though GDoS does not provide context sentences,5 each slang entry is attached with

citations containing year and region of usage. In Chapter 5, I show how such demo-

graphic information can be used to analyze variation of slang throughout history.

Recent work by Lucy and Bamman (2021) has also published a glossary of Reddit

slang used by different subreddit communities.6 I do not make use of this resource in

this dissertation because the majority of contained entries are acronyms.

Experiments in this dissertation use both OSD and GDoS as the primary data

sources to ensure data quality. The regional-historical aspect of GDoS also enables

historical analysis of slang and its semantic variation. Chapter 3 also describes a

procedure to enhance the quality of UD to be used for training and evaluation. The

larger UD sets are only used when the scale is necessary to train neural architectures

such as a Sequence-to-Sequence baseline (Sutskever et al., 2014).

It is worth noting that conventional dictionaries such as OED (Stevenson, 2010)

4http://www.cs.ucsb.edu/~william/data/slang_ijcnlp.zip
5Example context sentences can be automatically inferred from an entry’s citations for many definition entries but

the sentences are not provided directly by the dictionary.
6https://github.com/lucy3/ingroup_lang

http://www.cs.ucsb.edu/~william/data/slang_ijcnlp.zip
https://github.com/lucy3/ingroup_lang
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also tag certain definition entries as slang. However, I do not use such data because

the tagging procedure tends to be inconsistent across dictionaries and even within

different editions of the same dictionary (Dumas and Lighter, 1978). Older slang

dictionaries such as Flexner (1960) are also not considered because they are either 1)

not in digitized form and/or 2) not collected recently. Recall that the definition of

slang is a time-sensitive matter due to its ephemerality and conventionalization (Eble,

1989). To avoid these issues, I only consider slang dictionaries that have been updated

in the last 10 years.



Chapter 3

Slang generation

The contents of this chapter are based on my previous publication (Sun et al., 2021).

3.1 Motivation

In this chapter, we present a computational method that automatically extracts pat-

terns of semantic extension from slang dictionaries. We show how the extracted

patterns can improve semantic representation of slang in NLP systems and how such

representations can be applied to build a computational framework that models the

generative process of slang word choice, allowing the automatic machine generation

of novel slang usage.

Our goal is to extend the capacity of NLP systems toward slang in a principled

framework. Given the existing methods that are potentially applicable to cases of

coinage (e.g., Cook and Stevenson, 2010b; Pinter et al., 2017), we focus on modeling

the generative process of slang reuse. We illustrate the problem of slang word choice

in Figure 3.1. Given a to-be-expressed slang sense such as ‘To kill’, we ask how

we can emulate the speaker’s choice of slang word(s) in informal context. We are

particularly interested in how the speaker reuses existing words from the lexicon and

makes innovative use of those words in novel slang context (such as the use of ice in

Figure 3.1).

39
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Figure 3.1: A slang generation framework that models speaker’s choice of a slang term (ice) based
on the novel sense (‘To kill’) in context and relations with conventional senses (e.g., ‘Frozen water’).

The capacity for generating novel slang word usages will have several implications

and applications. From a scientific view, modeling the generative process of slang

word choice will help explain the emergence of novel slang usages over time—we

show how our framework can predict the emergence of slang in the history of En-

glish.1 From a practical perspective, automated slang generation paves the way for

automated slang interpretation. Existing psycholinguistic work suggests that lan-

guage generation and comprehension rely on similar cognitive processes (e.g., Picker-

ing and Garrod, 2013; Ferreira Pinto Jr. and Xu, 2021). Similarly, a generative model

of slang can be an integral component of slang comprehension that informs the rela-

tion between a candidate sense and a query word, where the mapping can be unseen

during training. Furthermore, a generative approach to slang may also be applied

1We experiment on English slang but our methodology is applicable to other languages as well.
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to downstream tasks such as naturalistic chatbots, sentiment analysis, and sarcasm

detection (see work by Aly and van der Haar (2020) and Wilson et al. (2020)).

We propose a neural-probabilistic framework that involves three components: 1)

a probabilistic choice model that predicts an appropriate word for expressing a query

slang meaning given its context, 2) a sense encoder that captures slang meaning in a

modified embedding space, and 3) a prior that incorporates different forms of context.

We operationalize our sense encoder using contrastive learning, a semi-supervised

learning technique used to extract semantic representations in data-scarce situations.

It can be incorporated into neural networks in the form of twin networks, where

two exact copies of an encoder network are applied to two different examples. The

encoded representations are then compared and back-propagated. Alternative loss

schemes such as Triplet (Weinberger and Saul, 2009; Wang et al., 2014) and Quadru-

plet loss (Law et al., 2013) have also been proposed to enhance stability in training. In

NLP, contrastive learning has been applied to learn similarities between text (Mueller

and Thyagarajan, 2016; Neculoiu et al., 2016) and speech utterances (Kamper et al.,

2016) with recurrent neural networks. The contrastive learning method we develop

has two main differences: 1) We do not use recurrent encoders because they per-

form poorly on dictionary-style definitions; 2) We propose a joint neural-probabilistic

framework on the learned embedding space instead of resorting to methods such as

nearest-neighbor search for generation.

Specifically, the contrastive encoder we propose transforms slang and conventional

senses of a word into a slang-sensitive embedding space where they will lie in close

proximity. As such, any conventional and slang sense pairs of ice, such as ‘Frozen

water’ and ‘To kill’, will be encouraged to be in close proximity in the learned embed-

ding space. Moreover, the resulting embedding space will also set apart slang senses

from unrelated conventional senses (e.g., pushing away ‘To kill’ and ‘Take a break’

where the latter is not a conventional sense of ice or its conventional synonyms). As

a result, distances between corresponding conventional and slang senses of a word
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would be much smaller than those between two unrelated senses. A practical advan-

tage of this encoding method is that semantic similarities pertinent to slang can be

extracted automatically from a small amount of training data. We show sampling

strategies that can provide further data augmentation for this data-scarce task. After

training, the resulting learned semantic space will be sensitive to common semantic

extension patterns of slang.

Our framework also captures the flexible nature of slang usages in natural context.

Here, we focus on syntax and linguistic context, although our framework should allow

for the incorporation of social or extra-linguistic features as well. Recent work has

found that the flexibility of slang is reflected prominently in syntactic shift (Pei et al.,

2019). For example, ice—most commonly used as a noun—is used as a verb to express

‘To kill’ (in Figure 3.1). We build on these findings by incorporating syntactic shift as

a prior in the probabilistic model, which is integrated coherently with the contrastive

neural encoder that captures flexibility in slang sense extension. This module allows

us to select words that are more likely to be selected as extension candidates with

respect to usage context.2 We also show how a contextualized language infilling model

can provide additional prior information from linguistic context (cf. Erk, 2016).

To preview our results, we show that our framework yields a substantial improve-

ment on the accuracy of slang generation against state-of-the-art embedding methods

including deep contextualized models, in both few-shot and zero-shot settings. We

evaluate our framework rigorously on three datasets constructed from slang dictio-

naries and in a historical prediction task.

3.2 Preliminary analysis

Our basic premise is that the word-sense associations between an extended slang sense

and the extended word are not random. Specifically, slang word choice depends on

2We acknowledge that many slang senses relate to taboo topics such as drug and sex (Green, 2010; Eble, 2012)
Since we model the generative process of slang from a speaker’s perspective, we assume the to-be-expressed sense is
given which makes such biases irrelevant when predicting slang word choice.
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(a) Mean cosine distance (b) Mean euclidean distance

Figure 3.2: Mean sense embedding distances between pairs of conventional and slang sense extensions
found in Warren (1992).

linking conventional or established senses of a word (such as ‘Frozen water’ for ice) to

its emergent slang senses (such as ‘To kill’ for ice). For instance, the extended use of

ice to express killing could have emerged from the coldness of one’s remains. However,

‘Frozen water’ and ‘To kill’ convey very different meanings and we postulate that the

innovative nature of slang makes such distant meaning pairs more acceptable than

in those of conventional sense extension. In other words, slang sense extensions with

innovative characteristics are more likely to be accepted by language users as slang.

Warren’s (1992) study has provided preliminary evidence to this claim by contrast-

ing the sense extension strategies employed by conventional and slang sense extension

(See Section 1.2.2). To further validate this claim, we measure the semantic distances

between pairs of conventional and slang sense extensions found in Warren. This con-

tains 522 instances of slang sense extensions and 488 instances of conventional sense

extensions. For each sense, we embed the sense definition sentence using both fast-

Text (Bojanowski et al., 2017) and Sentence-BERT (SBERT; Reimers and Gurevych,

2019). For fastText, we average the word embeddings of all content words within

the sentence. For SBERT, we apply it directly on the definition sentence. For each

sense extension pair, we measure the semantic distance by computing the cosine and
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Euclidean distances between the two sense embeddings.

Figure 3.2 shows the mean embedding distances between pairs of conventional

and slang sense extensions. For both fastText and SBERT based definition sen-

tence embeddings, the semantic distances corresponding to slang sense extensions are

much greater than those of conventional sense extension. The dichotomy between the

semantic distances illustrates the distinction between conventional and slang sense

extension and necessitates tailored semantic representations for slang.

A principled semantic representation should adapt to such associations. Our pro-

posed framework is aimed at encoding slang that relates informal and conventional

word senses, hence capturing semantic similarities beyond those from existing lan-

guage models. In particular, BERT-based systems would consider ‘Frozen water’ to

be semantically distant or irrelevant from ‘To kill’, so they cannot predict ice to be

appropriate for expressing ‘To kill’ in slang context.

3.3 Slang generation framework

Our computational framework for slang generation comprises three interrelated com-

ponents: 1) A probabilistic formulation of word choice to leverage encapsulated slang

senses from a modified embedding space; 2) A contrastive encoder—inspired by vari-

ants of twin network (Baldi and Chauvin, 1993; Bromley et al., 1993)—that constructs

a modified embedding space for slang by adapting the conventional embeddings to

incorporate new senses of slang words; 3) A contextually informed prior for capturing

flexible uses of naturalistic slang.

3.3.1 Probabilistic word choice model

We first introduce a model of word choice adapted from previous work on word sense

extension (Ramiro et al., 2018; Habibi et al., 2020), based on the premise that word

senses extend by relating new meanings to the current meanings of words that are
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closely related in semantic space.

Given a query slang sense MS and its context CS, we cast the problem of slang

generation as inference over all candidate words in a fixed vocabulary V . Assuming

a candidate word w is drawn from our vocabulary V , the posterior is as follows:

P (w|MS, CS) ∝ P (MS|w,CS)P (w|CS)

∝ P (MS|w)P (w|CS) (3.1)

Here, we define the prior P (w|CS) based on regularities of syntax and/or linguis-

tic context in slang usage (described in Section 3.5). We formulate the likelihood

P (MS|w)3 by specifying the relations between conventional senses of word w (de-

noted by Mw = {Mw1 ,Mw2 , · · · ,Mwm}, i.e., the set of senses drawn from a standard

dictionary) and the query MS (i.e., slang sense that is outside the standard dictio-

nary). Specifically, we model the likelihood by measuring the proximity between the

slang sense MS and the set of conventional senses Mw of word w in a continuous,

embedded semantic space:

P (MS|w) := P (MS|Mw)

∝ f({sim(ES, Ewi
);Ewi

∈ Ew}) (3.2)

Here, f(·) is a function with range [0, 1] that measures the cohesiveness between a

slang sense and a set of conventional senses. ES and Ew represent semantic embed-

dings of the slang sense MS and the set of conventional senses Mw. We derive these

embeddings from contrastive learning which we describe in detail in Section 3.4, and

we compare this proposed method with baseline methods that draw embeddings from

existing sentence embedding models.

Our choice of the function f(·) is motivated by prior work on word sense exten-

sion (Ramiro et al., 2018; Habibi et al., 2020). Specifically, we consider variants of

3Here, we only consider linguistically motivated context as CS and assume the semantic shift patterns of slang are
universal across all such contexts.
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two established methods in machine learning: One Nearest Neighbor (1NN) match-

ing (Koch et al., 2015; Vinyals et al., 2016) and Prototypical learning (Snell et al.,

2017).

The 1NN model postulates that a candidate word should be chosen according to

the similarity between the query slang sense and the closest conventional sense:

f1nn(ES, Ew) = max
Ewi∈Ew

sim(ES, Ewi
) (3.3)

In contrast, the prototype model postulates that a candidate word should be chosen

if its aggregate (or average) sense is in close proximity of the query slang sense:

fprototype(ES, Ew) = sim(ES, E
prototype
w )

Eprototype
w =

1

|Ew|
∑

Ewi∈Ew

Ewi
(3.4)

In both cases, the similarity between two senses is defined by the exponentiated

negative squared Euclidean distance in semantic embedding space:

sim(ES, Ew) = exp
(
− ||ES − Ew||22

hs

)
(3.5)

Here, hs is a learned kernel width parameter.

A previous iteration of our work (Sun et al., 2019) has directly applied such models

along with off-the-shelf word embeddings (Bojanowski et al., 2017) to capture slang

word choice. However, a critical limitation is that slang senses, unlike their conven-

tional counterparts, can often be far apart in a vanilla embedding space. As a result,

senses that should be considered close together in the context of slang generation

(e.g. ‘Frozen water’ and ‘To kill’) will not match closely. Section 3.4 will describe an

alternative sense embedding scheme that addresses this limitation.
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3.3.2 Collaborative filtering

We also consider an enhanced version of the posterior using collaborative filtering

(Goldberg et al., 1992), where words with similar meaning are predicted to shift to

similar novel slang meanings (Lehrer, 1985; Xu and Kemp, 2015). For example, the

word snow may also be a good candidate word to express ‘To kill’, given its similarity

with the true slang ice in conventional meanings. We operationalize this by summing

over the close neighborhood of candidate word L(w):

P (w|MS, CS) =
∑

w′∈L(w)

P (w|w′)P (w′|MS, CS) (3.6)

Here, P (w′|MS, CS) is a fixed term calculated identically as in Equation (3.1) and

P (w|w′) is the weighting of words in the close neighborhood of a candidate word w.

This weighting probability is set proportional to the exponentiated negative cosine

distance between w and its neighbor w′ defined in pre-trained word embedding space,

and the kernel parameter hcf is also estimated from the training data:

P (w|w′) ∝ sim(w,w′) = exp
(
− d(w,w′)

hcf

)
(3.7)

Here, d(w,w′) is the cosine distance between two words in a word embedding space.

3.4 Contrastive sense encodings

We develop a contrastive semantic encoder for constructing a new embedding space

representing slang and conventional word senses that do not bear surface similarities.

For instance, the conventional sense of ice such as ‘Frozen water’ can hardly be

related, in a literal sense, to the slang sense of ice such as ‘To kill’. The contrastive

embedding space we construct seeks to redefine or warp similarities, such that the

otherwise unrelated senses will be in closer proximity than they are under existing

embedding methods. For example, since metaphor is one of the frequently employed
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sense extension devices in slang, two metaphorically related senses can bear strong

similarity in slang usage, even though they may be far apart in a literal sense.

We sample triplets of word senses as input to contrastive learning, following work

on twin networks (Baldi and Chauvin, 1993; Bromley et al., 1993; Chopra et al., 2005;

Koch et al., 2015). We use dictionary definitions of conventional and slang senses

to obtain the initial sense embeddings (See Section 3.6.4 for details). Each triplet

consists of 1) an anchor slang sense MS, 2) a positive conventional sense MP , and 3)

a negative conventional sense MN . The positive sense should ideally be encouraged

to lie closely to the anchor slang sense (in the resulting embedding space), whereas

the negative sense should ideally be further away from both the positive conventional

and anchor slang senses.

Our triplet network uses a single neural encoder g to project each word sense

representation into a joint embedding space in Rd.

ES = g(MS);EP = g(MP );EN = g(MN) (3.8)

We choose a 1-layer fully connected network with ReLU (Nair and Hinton, 2010) as the

encoder g for pre-trained word vectors (e.g. fastText). For contextualized embedding

models we consider, g will be a Transformer encoder (Vaswani et al., 2017). In both

cases, we apply the same encoder network g to each of the three inputs. We train the

triplet network using the max-margin triplet loss (Weinberger and Saul, 2009), where

the squared distance between the positive pair is constrained to be closer than that

of the negative pair with a margin m:

Ltriplet =
[
m + ||ES − EP ||22 − ||ES − EN ||22

]
+

(3.9)

To train the triplet network, we build data triplets from every slang lexical entry (i.e.

a word-sense entry in a slang dictionary) in our training set. For each slang sense MS

of word w in a slang dictionary, we create a positive pair with each conventional sense
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Mwi
of the same word w found in a conventional dictionary. Then for each positive

pair, we sample a negative example every training epoch by randomly selecting a

conventional sense Mw′ from a word w′ that is sufficiently different from w, such that

the corresponding definition sentence Dw′ has less than 20% overlap in the set of

content words compared to MS and any conventional definition sentence Dwi
of word

w. We rank all candidate words in our vocabulary against w by computing cosine

distances from pre-trained word embeddings and consider a word w′ to be sufficiently

different if it is not in the top 20 percent.

In addition to using conventional senses of the matching word w for construct-

ing positive pairs, we also sample positive senses from a small neighborhood L(w)

of similar words. This sampling strategy provides linguistic knowledge from paral-

lel semantic change to encourage neighborhood structure in the learned embedding

space. Sampling from neighboring words also augments the size of the training data

considerably in this data-scarce task. We sample negative senses in a similar way,

except that we also consider all conventional definition sentences from neighboring

words when checking for overlapping senses.

3.5 Contextual prior

The final component of our framework is the prior P (w|CS) (see Equation (3.1)) that

captures flexible use of slang words with regard to syntax and distributional seman-

tics. For example, slang exhibits flexible Part-of-Speech (POS) shift, e.g., noun→verb

transition as in the example ice,4 and surprisals in linguistic context, e.g., ice in “I

have a feeling he’s gonna [blank] himself someday.” Here, we formulate the context

CS in two forms: 1) a syntactic-shift prior, namely the POS information PS to cap-

ture syntactic regularities in slang, and/or 2) a linguistic context prior, namely the

linguistic context KS to capture distributional semantic context when this is available

4Here, ice can also be used conventionally as a verb but we consider its most frequent conventional sense for this
example. We later show how the frequency distribution across different POS tags can be accounted for.
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in the data.

3.5.1 Syntactic-Shift Prior (SSP)

Given a query POS tag PS, we construct the syntactic prior by comparing POS dis-

tribution Pw from literal natural usage of a candidate word w with a smoothed POS

distribution PS centered at PS. However, we cannot directly compare PS to Pw be-

cause slang usage often involves shifting POS (Eble, 2012; Pei et al., 2019). To account

for this, we apply a transformation T by counting the number of POS transitions for

each slang-conventional definition pair in the training data (see Section 3.6.2 for de-

tails). Each column of the transformation matrix T is then normalized, so column i

of T can be interpreted as the expected slang-informed POS distribution given the

i’th POS tag in conventional context (e.g., the noun column gives the expected slang

POS distribution of a word that is used exclusively as a noun in conventional usage).

The slang-contextualized POS distribution P∗
S can then be computed by applying T

on PS: P∗
S = T×PS. The prior can be estimated by comparing the POS distributions

Pw and P∗
S via Kullback-Leibler (KL) divergence:

P (w|CS) = P (w|PS) ∝ exp
(
−KL(Pw,P∗

S)
) 1

2
(3.10)

Intuitively, this prior captures the regularities of syntactic shift in slang usage, and it

favors candidate words with POS characteristics that fits well with the queried POS

tag in a slang context.

3.5.2 Linguistic Context Prior (LCP)

We apply a language model PLM to a given linguistic context KS to estimate the

probability of each candidate word:

P (w|CS) = P (w|KS) ∝ PLM(w|KS) + α (3.11)
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Here, α is a Laplace smoothing constant. We use the GPT-2 based language in-

filling model from Donahue et al. (2020) as PLM and discuss the implementation in

Section 3.6.3.

3.6 Experimental setup

3.6.1 Lexical resources

We collected lexical entries of slang and conventional words/phrases from three sepa-

rate online dictionaries: 1) Online Slang Dictionary (OSD),5 2) Green’s Dictionary of

Slang (GDoS) (Green, 2010),6 and 3) an open-source subset of Urban Dictionary (UD)

data from Kaggle.7 In addition, we gathered dictionary definitions of conventional

senses of words from the online version of Oxford Dictionary (OD).8

3.6.1.1 Slang dictionary

Both slang dictionaries (OSD and GDoS) are freely accessible online and contain slang

definitions with meta-data such as Part-of-Speech tags. Each data entry contains the

word, its slang definition, and its part-of-speech (POS) tag. In particular, OSD

includes example sentence(s) for each slang entry which we leverage as linguistic

context, and GDoS contains time-tagged references that allow us to perform historical

prediction (described later). We removed all acronyms (i.e., fully capitalized words)

as they generally do not extend meaning, and slang definitions that share more than

50% content words with any of their corresponding conventional definitions to account

for conventionalized slang. We also removed slang with novel word forms where no

conventional sense definitions are available. Slang phrases were treated as unigrams

because our task only concerns the association between senses and lexical items. Each

sense definition was considered a data point during both learning and prediction.

5OSD: http://onlineslangdictionary.com
6GDoS: https://greensdictofslang.com
7UD: https://www.kaggle.com/therohk/urban-dictionary-words-dataset
8OD: https://en.oxforddictionaries.com
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Dataset
# of

unique slang
word forms

# of slang
definition entries

# of
conventional definition

entries in OD

Avg. definition
sentence length

OSD 1,635 2,979 10,091 7.54

GDoS 6,540 29,300 29,640 6.48

UD 1,464 2,631 10,357 9.73

Table 3.1: Summary of dataset statistics for the online slang dictionaries used in the slang generation
study.

We later partitioned definition entries from each dataset to be used for training,

validation, and testing. Note that a word may appear in both training and testing

but the pairing between word senses is unique (see Section 3.7.3 for discussion).

3.6.1.2 Conventional word senses

We focused on the subset of OD containing word forms that are also available in

the slang datasets described. For each word entry, we removed all definitions that

have been tagged as informal because these are likely to represent slang senses. This

results in 10,091 and 29,640 conventional sense definitions corresponding to the OSD

and GDoS datasets respectively.

3.6.1.3 Data split

We used all definition entries from the slang resources such that the corresponding

slang word also exists in the collected OD subset. The resulting datasets (OSD and

GDoS) had 2,979 and 29,300 definition entries respectively, from 1,635 and 6,540

unique slang words, of which 1,253 are shared across both dictionaries. For each

dataset, the slang definition entries were partitioned into a 90% training set and a

10% test set. 5% of the data in the training set were set aside for validation when

training the contrastive encoder.
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3.6.1.4 Urban Dictionary

In addition to the two datasets described above, we provide a third dataset based

on Urban Dictionary (UD) that are made available via Kaggle. Unlike the previous

two datasets, we are able to make this one publicly available without requiring one to

obtain prior permission from the data owners.9 To guard against the crowd-sourced

and noisy nature of UD, we ensure quality by keeping definition entries such that 1)

it has at least 10 more upvotes than downvotes, 2) the word entry exists in one of

OSD or GDoS, and 3) at least one of the corresponding definition sentences in these

dictionaries has a 20% or greater overlap in the set of content words with the UD

definition sentence. We also remove entries with more than 50% overlap in content

words with any other UD slang definitions under the same word to remove duplicated

senses. This results in 2,631 definitions entries from 1,464 unique slang words. The

corresponding OD subset has 10,357 conventional sense entries. We find entries from

UD to be more stylistically variable and lengthier, with a mean entry length of 9.73

in comparison to 7.54 and 6.48 for OSD and GDoS respectively. Table 3.1 summaries

the dataset statistics.

3.6.2 Part-of-Speech Data

The natural POS distribution Pw for each candidate word w is obtained using POS

counts from the most recent available decade of the HistWords project (Hamilton

et al., 2016). For word entries that are not available, mostly phrases, we estimate Pw

by counting POS tags from Oxford Dictionary (OD) entries of w.

When estimating the slang POS transformation for the syntactic prior, we mapped

all POS tags into one of the following six categories: {verb, other, adv, noun, interj,

adj} for the OSD experiments. For GDoS, the tag ‘interj’ was excluded as it is not

present in the dataset.

9Code and data available at: https://github.com/zhewei-sun/slanggen

https://github.com/zhewei-sun/slanggen
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3.6.3 Contextualized Language Model Baseline

We considered a state-of-the-art GPT-2 based language infilling model from Donahue

et al. (2020) as both a baseline model and a prior to our framework (on the OSD

data where context sentences are available for the slang entries). For each entry,

we blanked out the corresponding slang word in the example sentence, effectively

treating our task as a cloze task. We applied the infilling model to obtain probability

scores for each of the candidate words and apply a Laplace smoothing of 0.001. We

fine-tuned the LM infilling model using all example sentences in the OSD training set

until convergence. We also experimented with a combined prior where the two priors

are combined using element-wise multiplication and re-normalization.

3.6.4 Baseline Embedding Methods

To compare with and compute the baseline embedding methods M for definition

sentences, we used 300-dimensional fastText embeddings (Bojanowski et al., 2017)

pre-trained with subword information on 600 billion tokens from Common Crawl10

as well as 768-dimensional Sentence-Bert (SBERT) (Reimers and Gurevych, 2019)

encoders pretrained on Wikipedia and fine-tuned on NLI datasets (Bowman et al.,

2015; Williams et al., 2018). The fastText embeddings were also used to compute

cosine distances d(w,w′) in Eq. 3.7. Embeddings for phrases and the fastText-based

sentence embeddings were both computed by applying average pooling to normalized

word-level embeddings of all content words. In the case of SBERT, we fed in the

original definition sentence.

3.6.5 Training Procedures

We trained the triplet networks for a maximum of 20 epochs using Adam (Kingma

and Ba, 2015) with a learning rate of 10−4 for fastText and 2−5 for SBERT based

models. We preserved dimensions of the input sense vectors for the contrastive embed-

10http://commoncrawl.org



CHAPTER 3. SLANG GENERATION 55

dings learned by the triplet network (that is, 300 for fastText and 768 for SBERT). We

used 1,000 fully-connected units in the contrastive encoder’s hidden layer for fastText

based models. Triplet margins of 0.1 and 1.0 were used with fastText and SBERT

embeddings respectively.

We trained the probabilistic classification framework by minimizing negative log

likelihood of the posterior P (w∗|MS, CS) on the ground-truth words for all definition

entries in the training set. We jointly optimized kernel width parameters using L-

BFGS-B (Byrd et al., 1995). To construct a word w’s neighborhood L(w) in both

collaborative filtering and triplet sampling, we considered the 5 closest words in cosine

distances of their fastText embeddings.

3.7 Experiments

3.7.1 Slang generation

We first evaluated our models quantitatively by predicting slang word choices: Given

a novel slang sense (a definition taken from a slang dictionary) and its part-of-speech,

how likely is the model going to predict the ground-truth slang recorded in the dictio-

nary? Note that the goal here is not to reproduce the slang dictionary. The slang word

recorded in a dictionary is among one of the plausible expressions that can extend

to the slang sense. However, the recorded word choice has gained enough traction

to enter a slang dictionary likely due to having high semantic plausibility compared

to alternative words. Therefore, a good slang generation model should assign high

probabilities to the ground-truth slang word choice.

To assess model performance, we allowed each model to make up to |V | ranked

predictions where V is the vocabulary of the dataset being evaluated, and we used

standard Area-Under-Curve (AUC) percentage from Receiver-Operator Characteris-

tic (ROC) curves to assess overall performance. We show the ROC curves for the

OSD evaluation in Figure 3.3 as an illustration. The AUC metric is similar to and a
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Figure 3.3: ROC curves for slang generation in OSD test set. Collaborative-filtering prototype model
was used as the word choice model. Ticks on the y-axis indicate median precision of the models.

continuous extension to an F1 score by comprehensively sweeping through the num-

ber of candidate words a model is allowed to predict. We find this metric to be the

most appropriate because multiple words may be appropriate to express a probe slang

sense.

To examine the effectiveness of the contrastive embedding method, we varied the

semantic representation as input to the models by considering both fastText and

SBERT (described in Sec 3.6.4). For both embeddings, we experimented with the

baseline variant without the contrastive encoding (e.g., vanilla embeddings from fast-

Text and SBERT). We then augmented the models incrementally with the contrastive

encoder and the priors whenever applicable to examine their respective and joint ef-

fects on model performance in slang word choice prediction. We observed that, under

both datasets, models leveraging the contrastively learned sense embeddings more

reliably predict the ground-truth slang words, indicated by both higher AUC scores
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and consistent improvement in precision over all retrieval ranks. Note that the vanilla

SBERT model, despite being a much larger model trained on more data, only pre-

sented minor performance gains when compared with the plain fastText model. This

suggests that simply training larger models on more data does not better encapsulate

slang semantics.

We also analyzed whether the contrastive embeddings are robust under different

choices of the probabilistic models. Specifically, we considered the following four

variants of the models: 1) 1-Nearest Neighbor (1NN), 2) Prototype, 3) 1NN with

collaborative filtering (CF), and 4) Prototype with CF. Our results show that applying

contrastively learned semantic embeddings consistently improves predictive accuracy

across all probabilistic choice models. The complete set of results for all 3 datasets is

summarized in Table 3.2.

We noted that the syntactic information from the prior improves predictive ac-

curacy in all settings, while by itself predicting significantly better than chance. On

OSD, we used the context sentences alone in a contextualized language infilling model

for prediction and also incorporating it as a prior. Again, while the prior consistently

improves model prediction, both by itself and when paired with the syntactic-shift

prior, the language model alone is not sufficient.

We found the syntactic-shift prior and linguistic context prior to be capturing

complementary information (mean Spearman correlation of 0.054 ± 0.003 across all

examples), resulting in improved performance when they are combined together.

However, the majority of the performance gain is attributed to the augmented

contrastive embeddings, which highlights the importance and supports our premise

that encoding of slang and conventional senses is crucial to slang word choice.

3.7.2 Evaluation on historic slang

We next performed a temporal analysis to evaluate whether our model explains slang

emergence over time. We used the time tags available in the GDoS dataset and
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Model 1NN Prototype 1NN+CF Proto+CF

Dataset 1: Online Slang Dictionary (OSD)

Prior Baseline - Uniform 51.9
Prior Baseline - Syntactic-shift 60.6
Prior Baseline - Linguistic Context

(Donahue et al., 2020) 61.8
Prior Baseline - Syntactic-shift

+ Linguistic Context 67.3

FastText Baseline 63.2 65.2 66.0 68.7
FastText

+ Contrastive Semantic Encoding (CSE) 71.7 71.6 73.0 72.6
FastText

+ CSE + Syntactic-shift Prior (SSP) 73.8 73.4 75.2 74.4
FastText

+ CSE + Linguistic Context Prior (LCP) 73.6 73.2 74.7 73.9
FastText + CSE + SSP + LCP 75.4 74.9 76.5 75.6

SBERT Baseline 67.4 68.1 69.5 72.0
SBERT + CSE 76.6 77.4 77.4 78.0
SBERT + CSE + SSP 77.6 78.0 78.8 78.9
SBERT + CSE + LCP 77.8 78.4 78.1 78.7
SBERT + CSE + SSP + LCP 78.5 79.0 79.4 79.5

Dataset 2: Green’s Dictionary of Slang (GDoS)

Prior Baseline - Uniform 51.5
Prior Baseline - Syntactic-shift 61.0

FastText Baseline 68.2 69.9 67.8 69.7
FastText

+ Contrastive Semantic Encoding (CSE) 73.4 74.0 74.1 74.8
FastText

+ CSE + Syntactic-shift Prior (SSP) 74.5 74.8 75.2 75.8

SBERT Baseline 67.1 68.0 66.8 67.5
SBERT + CSE 77.8 78.2 77.4 77.9
SBERT + CSE + SSP 78.5 78.7 78.3 78.6

Dataset 3: Urban Dictionary (UD)

Prior Baseline - Uniform 52.3

FastText Baseline 65.2 68.8 67.6 70.9
FastText

+ Contrastive Semantic Encoding (CSE) 71.0 72.2 71.5 73.7

SBERT Baseline 72.4 71.7 74.0 74.4
SBERT + CSE 76.2 76.6 77.2 78.8

Table 3.2: Summary of model AUC scores (%) for slang generation in 3 slang datasets.

predicted historical slang from the past 50 years (1960s–2000s). For a given slang

entry recorded in history, we tagged its emergent decade using the earliest dated

reference available in the dictionary. For each future decade d, we trained our model

using all entries before d and assessed whether our model can predict the choices of
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Decade # Test Baseline SBERT+CSE+SSP

1960s 2010 67.5 77.4
1970s 1757 66.3 77.9
1980s 1655 66.3 78.6
1990s 1605 66.2 75.4
2000s 1374 65.9 77.0

Table 3.3: Summary of model AUC scores in historical prediction of slang emergence (1960s-2000s).
The non-contrastive SBERT baseline and the proposed full model (with contrastive embedding,
CSE, and syntactic prior, SSP) are compared using collaborative-filtering Prototype. Models were
trained and tested incrementally through time (test set sizes shown) and trained initially on 20,899
GDoS definitions prior to the 1960s. Test set entries from all previous decades are included in the
training set.

slang words for slang senses that emerged in the future decade. We scored the models

on slang words that emerged during each subsequent decade, simulating a scenario

where future slang usages are incrementally predicted given the existing slang usages

at a specific time.

Table 3.3 summarizes the result from the historical analysis for the non-contrastive

SBERT baseline and our full model (with contrastive embeddings), based on the

GDoS data. AUC scores are similar to the previous findings but slightly lower for

both models in this historical setting. Overall, we find the full model to improve

the baseline consistently over the course of history examined and achieve similar

performance as in the synchronic evaluation. This provides strong evidence that our

framework is robust and has the same predictive power over the emergence of future

slang.

3.7.3 Zero-shot vs. few-shot generation

We find that the performance of our models vary substantially depending on whether

the probe slang word has appeared during training versus not. Here, each candidate

word is treated as a class and each slang sense of a word seen in the training set is

considered a ‘shot’. In the few-shot case, although the slang sense in question was not

observed in prediction, the model has some a priori knowledge about its target word

and how it has been used in slang context (because a word may have multiple slang

senses), thus allowing the model to generalize toward novel slang usage of that word.
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(a) Online Slang Dictionary (OSD)

Model Few-shot Zero-shot

Prior - Uniform 55.1 47.1
Prior - Syntactic-shift 63.4 56.4
Prior - Linguistic Context 72.4 45.8
Prior - SSP + LCP 74.7 56.4

FT Baseline 68.3 69.2
FT + CSE 74.8 69.4
FT + CSE + SSP 76.8 70.9
FT + CSE + LCP 76.7 69.5
FT + CSE + SSP + LCP 78.7 70.9

SBERT Baseline 72.2 71.6
SBERT + CSE 78.3 77.5
SBERT + CSE + SSP 79.3 78.3
SBERT + CSE + LCP 79.8 77.1
SBERT + CSE + SSP + LCP 80.7 77.8

(b) Green’s Dictionary of Slang (GDoS)

Model Few-shot Zero-shot

Prior - Uniform 51.8 48.1
Prior - Syntactic-shift 61.6 54.8

FT Baseline 70.6 61.3
FT + CSE 76.3 59.2
FT + CSE + SSP 77.3 60.7

SBERT Baseline 68.3 59.6
SBERT + CSE 79.0 66.8
SBERT + CSE + SSP 79.7 67.7

(c) Urban Dictionary (UD)

Model Few-shot Zero-shot

Prior - Uniform 54.2 49.1

FT Baseline 68.6 75.0
FT + CSE 76.2 69.4

SBERT Baseline 73.0 76.8
SBERT + CSE 80.6 75.6

Table 3.4: Model AUC scores (%) for Few-shot and Zero-shot test sets (“CSE” for contrastive
embedding, “SSP” for syntactic prior, “LCP” for contextual prior, and “FT” for fastText).

In the zero-shot case, the model needs to select a novel slang word (i.e., one that

never appeared in training) and hence has no direct knowledge about how that word

should be extended in a slang context. Such knowledge must be inferred indirectly,

and in this case, from the conventional senses of the candidate words. The model can

then infer how words with similar conventional senses might extend to slang context.

Table 3.4 outlines the AUC scores of the collaboratively filtered prototype models

under few-shot and zero-shot settings. For each dataset, we partitioned the corre-
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sponding test set by whether the target word appears at least once within another

definition entry in the training data. This results in 179, 2,661, and 165 few-shot

definitions in OSD, GDoS and UD respectively, along with 120, 269, 96 zero-shot

definitions. From our results, we observed that it is more challenging for the model

to generalize usage patterns to unseen words, with AUC scores often being higher

in the few-shot case. Overall, we found the model to have the most issues handling

zero-shot cases from GDoS due to the fine-grained senses recorded in this dictionary,

where a word has more slang senses on average (in comparison to the OSD and UD

data). This issue caused the models to be more biased towards generalizing usage

patterns from more commonly observed words. Finally, the SBERT-based models

tend to be more robust towards unseen word-forms, potentially benefiting from their

contextualized properties.

3.7.4 Synonymy in slang

We also examined the influence of synonymy (or sense overlap) in the slang datasets.

We quantified the degree of sense synonymy by checking each test sense against all

training senses and computing the edit distance between the corresponding sets of

constituent content words of the sense definitions.

Figure 3.4 shows the distribution of degree of synonymy across all test examples

where the edit distance to the closest training example is considered. We perform our

evaluation by binning based on the degree of synonymy and summarize the results

in Figure 3.5. We do not observe any substantial changes in performance when

controlling for the degree of synonymy, and in fact, the highly synonymous definitions

appear to be more difficult (as opposed to easier) for the models. Overall, our full

models show consistent improvement over the respective baselines across different

degrees of synonymy, particularly with the SBERT based full model which offers

substantial improvement in most cases.
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Figure 3.4: Degree of synonymy shared between the test examples and the respective training
examples for each of the three datasets.

3.7.5 Comparing sense representations

To understand the consequence of contrastive embedding, we compute the relative

distances between conventional and slang senses of a word in an embedding space.

This shows the extent to which the learned semantic relations may generalize. We

measured the Euclidean distance between each slang embedding with the prototype

sense vector of all candidate words, without applying the probabilistic choice models.

Table 3.5 shows the ranks of the corresponding candidate words, averaged over all

slang sense embeddings considered and normalized between 0 and 1. We observed

that contrastive learning indeed brings closer embeddings of corresponding slang and

conventional senses (from the same word), as indicated by lower mean ranks after

the embedding procedure is applied. Under both fastText and SBERT, we obtained

significant improvement (i.e. lower embedding distance rank) on both the OSD and

GDoS test sets (p < 0.001). On UD, the improvement is significant for SBERT
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(a) Online Slang Dictionary (OSD)
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(b) Green’s Dictionary of Slang (GDoS)
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(c) Urban Dictionary (UD)
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Figure 3.5: Model AUC scores (%) under test sets with different degrees of synonymy present in
training, for the baselines and the best performing models (under collaborative-filtering prototype).
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(a) Online Slang Dictionary (OSD)

Model Training Testing

FT Baseline 0.33 ± 0.011 0.35 ± 0.033
FT + CSE 0.15 ± 0.0083 0.28 ± 0.030

SBERT Baseline 0.34 ± 0.011 0.32 ± 0.033
SBERT + CSE 0.097 ± 0.0069 0.23 ± 0.029

(b) Green’s Dictionary of Slang (GDoS)

Model Training Testing

FT Baseline 0.30 ± 0.0034 0.30 ± 0.010
FT + CSE 0.19 ± 0.0028 0.26 ± 0.0097

SBERT Baseline 0.32 ± 0.0035 0.32 ± 0.010
SBERT + CSE 0.10 ± 0.0019 0.22 ± 0.0089

(c) Urban Dictionary (UD)

Model Training Testing

FT Baseline 0.34 ± 0.012 0.31 ± 0.037
FT + CSE 0.20 ± 0.010 0.28 ± 0.033

SBERT Baseline 0.34 ± 0.012 0.28 ± 0.034
SBERT + CSE 0.10 ± 0.0075 0.23 ± 0.031

Table 3.5: Mean embedding distance ranks based on Euclidean distances from slang sense embed-
dings to prototypical conventional sense embeddings.

(p = 0.0062) but marginal for fastText (p = 0.098).11 The improved results on

the test sets illustrate the ability of our constrative learning scheme to effectively

generalize common slang semantic extension patterns from the training data.

3.7.6 Example generations

Table 3.6 shows 5 example slang usages from the GDoS test set and the top words

predicted by both the baseline SBERT model and the full SBERT-based model with

contrastive learning.

The full model exhibits a greater tendency to choose words that appear remotely

related to the queried sense (e.g., spill, swallow for the act of killing), while the base-

line model favors words that share only surface semantic similarity (e.g., retrieving

murder and homicide directly). We found cases where the model extends meaning

metaphorically (e.g., animal to action, in the case of chirp), euphemistically (e.g.,

11The p-values were computed using the Wilcoxon signed-rank test on pairs of sense embedding distances before
and after applying constrastive learning.
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Model Top-5 slang words predicted by model Predicted rank of the true slang

1. True slang: kick; Slang sense: ‘A thrill, amusement or excitement’
Sample usage: I got a huge kick when things were close to out of hand.

SBERT Baseline thrill, pleasure, frolic, yahoo, sparkle 3496 / 6540

Full model twist, spin, trick, crank, punch 96 / 6540

2. True slang: whiff; Slang sense: ‘To kill, to murder, [play on SE, to blow away]’
Sample usage: The trouble is he wasn’t alone when you whiffed him.

SBERT Baseline suicide, homicide, murder, killing, rape 2735 / 6540

Full model spill, swallow, blow, flare, dash 296 / 6540

3. True slang: chirp; Slang sense: ‘An act of informing, a betrayal’
Sample usage: Once we’re sure there’s no back-fire anywhere, the Sparrow will chirp his last chirp.

SBERT Baseline dupe, sin, scam, humbug, hocus 2431 / 6540

Full model chirp, squeal, squawk, fib, chat 1 / 6540

4. True slang: red;
Slang sense: ‘A communist, a socialist or anyone considered to have left-wing leanings’
Sample usage: Why the hell would I bed a red?

SBERT Baseline leveller, wildcat, mole, pawn, domino 1744 / 6540

Full model orange, bluey, black and tan, violet, shadow 164 / 6540

5. True slang: team; Slang sense: ‘A gang of criminals’
Sample usage: And a little team to follow me – all wanted up the yard.

SBERT Baseline gangster, hoodlum, thug, mob, gangsta 826 / 6540

Full model brigade, mob, business, gang, school 15 / 6540

Table 3.6: Example slang word predictions from the contrastively learned full model and SBERT
baseline (with no contrastive embedding) on slang usage from the Green’s Dictionary. Each example
shows the true slang, the probe slang sense, a sample usage, the alternative slang words predicted
by each model, and the predicted rank (colored bars indicate inverse rank) of the true slang from a
lexicon of 6,540 words. SE is an abbreviation for ‘Standard English’ used in GDoS.

spill and swallow for kill), and generalization of a concept (e.g., brigade and mob for

gang), all of which are commonly attested in slang usage (Eble, 2012).

We found the full model to achieve better retrieval accuracy in cases where the

queried slang undergoes a non-literal sense extension, whereas the baseline model is

situated at retrieving candidate words with incremental or literal changes in meaning.

We also noted many cases where the true slang word is difficult to predict without

appropriate background knowledge. For instance, the full-model suggested words

such as orange and bluey to mean ‘A communist’ but could not pinpoint the color

red without knowing its cultural association to communism. Finally, we observed

that our model to perform generally worse when the target slang sense can hardly be

related to conventional senses of the target word, suggesting that cultural knowledge

may be important to consider in the future.
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3.8 Conclusion

We have presented a framework that combines probabilistic inference with neural

contrastive learning to generate novel slang word usages. Our results suggest that

capturing semantic and contextual flexibility simultaneously helps to improve the au-

tomated generation of slang word choices with limited training data. To our knowl-

edge this work constitutes the first formal computational approach to modeling the

semantics of slang sense extension, and we have shown the promise of the learned

semantic space for capturing semantic extension patterns for slang that are attested

in slang dictionary data. We show in the next chapter how the generative semantic

model can be applied to enhance more practical aspects of slang NLP, particularly

the automated interpretation and translation of slang.



Chapter 4

Slang interpretation and

translation

The contents of this chapter are based on my previous publication (Sun et al., 2022).

4.1 Motivation

Building on the model for slang generation, this chapter considers the inverse problem

of slang interpretation that has more direct applications in natural language process-

ing particularly machine translation (e.g., of informal language). We combine the

generative semantic model of slang with context-based models in a semantically in-

formed interpretation framework that infers the intended meaning of a target slang.

We show that the generative semantic model can be applied to improve any context-

based baselines without the need to perform task-specific fine-tuning.

The interpretation and translation of slang can be difficult for both humans and

machines. Empirical studies have shown that, although it is done instinctively, inter-

pretation and translation of unfamiliar or novel slang expressions can be quite hard

for humans (Braun and Kitzinger, 2001; Mattiello, 2009). Similarly, these problems

are also notoriously difficult for natural language processing (NLP) systems, which

presents a critical challenge to downstream applications such as natural language

67
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Figure 4.1: Illustrations of slang interpretation in English (top panel) and slang translation (bottom
panel) from English to French on the original sentence (nonsensical), or on the interpreted version
of the sentence (sensical).

understanding and machine translation.

Consider the sentence “I got really steamed when my car broke down”. As illus-

trated in Figure 4.1, directly applying a translation system such as Google Translate

on this raw English sentence would result in a nonsensical translation of the slang

term steamed in French. This error is due partly to the underlying language model

that fails to recognize the flexible extended use of the slang term from its conven-

tional meaning (e.g., ‘Vapor’) to the slang meaning of ‘Angry’. However, if knowledge

about such semantic extensions can be incorporated into interpreting the slang prior

to translation, as Figure 4.1 shows the system would be quite effective in translating

the intended meaning.
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Figure 4.2: Overview of the slang interpretation method. A context-based model is first applied to
obtain a list of candidate interpretations. Then, each candidate is evaluated by a generative model
of slang semantics to output a reranked list of interpretations.

Here we consider the problem of slang interpretation illustrated in the top panel

of Figure 4.1. Given a target slang term like steamed in a novel query sentence, we

want to automatically infer its intended meaning in the form of a definition (e.g.,

‘Angry’). Tackling this problem has implications in both machine interpretation

and understanding of informal language within individual languages and translation

between languages.

One natural solution to this problem is to use contextual information to infer the

meaning of a slang term. Figure 4.2 illustrates this idea by showing the top infilled

words predicted under a GPT-2 (Radford et al., 2019) based language infill model

(Donahue et al., 2020). Each of these words can be considered a candidate paraphrase

for the target slang steamed conditioned on its surrounding words. Although the

ground-truth meaning ‘Angry’ is among the list of top candidates, this model infers

‘Sick’ as the most probable interpretation. A similar context-based approach has been

explored in a previous study led by Ni and Wang (2017) showing that a sequence-

to-sequence model trained directly on a large number of pairs of slang-containing

sentences along with their corresponding definitions from Urban Dictionary can be a

useful starting point toward the automated interpretation of slang.

We present an alternative approach to slang interpretation that builds on but goes

beyond the context-based models. Inspired by generative models of slang, we consider



CHAPTER 4. SLANG INTERPRETATION AND TRANSLATION 70

slang interpretation to be the inverse process of slang generation and propose a se-

mantically informed framework that takes into account both contextual information

and knowledge about slang meaning extensions (e.g., ‘Vapor’→‘Angry’) in inferring

candidate interpretations. Our framework incorporates a semantic model of slang

that uses contrastive learning to capture semantic extensions that link conventional

and slang meanings of words. Under this framework, meanings that are otherwise

far apart can be brought close, resulting in a semantic space that is sensitive to the

flexible extended usages of slang. Rather than using this learned semantic space to

generate novel slang usages, we apply it to the inverse problem of slang interpreta-

tion by checking whether a candidate interpretation may be suitably expressed as a

slang using the to-be-interpreted slang expression. For example, ‘Sick’ and ‘Angry’

can both replace the slang steamed in a given context, but ‘Angry’ may be a more

appropriate meaning to be expressed using steamed in the slang context. As such,

we build a computational framework that takes into account the semantic knowledge

of words as well as the context of slang in the interpretation process.

Following Ni and Wang (2017), we assume that the to-be-interpreted slang has

already been detected in a sentence. In our experiments, example usage sentences

in slang dictionaries are taken as slang-containing sentences. In practice, detection

can be achieved by setting up a slang detection task directly as in work of Pei et al.

(2019). Alternatively, novel sense identification methods (e.g., Lau et al., 2012; Cook

et al., 2013) can be applied to find word usages attached with novel senses.1

Figure 4.2 shows an overview of our proposed method. We begin with a set of

candidate interpretations informed by a context-based model (e.g., a language infill

model), where the set would contain a list of possible meanings that fit reasonably in

the given context. We then rerank this set of candidate interpretations by selecting

the meaning that is most likely to be extended as slang from the to-be-interpreted

slang expression.

1In this case, additional care must be taken to ensure that the detected sense indeed reflects slang usage, as novel
conventional senses may also be detected
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For the scope of this chapter, we focus on interpreting cases of reuse because such

cases of slang cannot be readily addressed by existing dictionary-based approaches

(e.g., Pal and Saha, 2013) or models of out-of-vocabulary words (e.g., Sennrich et al.,

2016; Pinter et al., 2017). However, extensive studies in slang have suggested that

a high proportion of slang usages relies on the extended reuse of existing word

forms (Warren, 1992; Green, 2010; Eble, 2012). We show that our framework can

enhance large language models in slang interpretation in English and slang transla-

tion from English to other languages.2

4.2 Problem formulation

We define slang interpretation formally as follows. Given a target slang term S in

context CS of a query sentence, interpret the meaning of S by a definition M .3 The

context is an important part of the problem formulation since a slang term S may be

polysemous and context can be used to constrain the interpretation of its meaning.

We define a slang interpreter I probabilistically as:

I(S,CS) = arg max
M

P (M |S,CS) (4.1)

Given this formulation, we retrieve an n-best list of candidate interpretations K

(i.e., |K| = n) based on an interpretation model of choice P (M |S,CS). Here, we con-

sider two baseline models for P (M |S,CS): 1) a language-model (LM) based approach

that treats slang interpretation as a cloze task, and 2) a sequence-to-sequence based

approach similar to work by Ni and Wang (2017).

2Code and data available at: https://github.com/zhewei-sun/slanginterp
3In our experiments, M is a definition sentence.

https://github.com/zhewei-sun/slanginterp
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4.3 Baseline approaches

4.3.1 Unsupervised language model based interpretation

The first model we consider is a language infill model in a cloze task, in which the

model itself is based on large pre-trained language models such as GPT-2 (Radford

et al., 2019). Although slang expressions may make sporadic appearances during

training, this model is not trained specifically on a slang-related task and thus serves

as a baseline that reflects the state-of-the-art language-model based NLP systems

(e.g., Donahue et al., 2020).

Given context CS containing target slang S, we blank out S in the context and

ask the language infill model to infer the most likely words to fill in the blank. This

results in a probability distribution P (w|CS\S) over candidate words w. The infilled

words can then be viewed as candidate interpretations of the slang S:

I(S,CS) =D

[
arg max

w

(
P (w|CS\S) +


1, if T (w) = T (CS\S).

0, otherwise.

)]
(4.2)

Here, D is a dictionary lookup function that maps a candidate word w to a definition

sentence. In this case, we constrain the space of meanings considered to the set of all

meanings corresponding to words in the lexicon.4 Additionally, we apply a Part-of-

Speech (POS) tagger T to check whether the candidate word w shares the same POS

tag as the blanked-out word in the usage context. Words that share the same POS

tags are preferred in the list of n-best retrievals.

This baseline approach by itself does not take into account any (semantic) in-

formation from the target slang S. In the case where two distinctive slang terms

may be placed in the same context, the model would generate the exact same out-

put. However, this LM based approach does not require task-specific data to train.

4In doing so, we assume that the intended meaning can be expressed using an existing word in our lexicon. Thus,
a limitation of the LM-based approach is that it cannot accurately interpret novel concepts that have not entered the
standard lexicon.
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We show later that by reranking language model outputs, it is possible to achieve

state-of-the-art performance using much less on-task data than existing approaches.

4.3.2 Supervised deep learning based interpretation

Ni and Wang (2017) partly addressed the context-only limitation by encoding the

slang term using a character-level recurrent neural network in an end-to-end model in-

spired by the sequence-to-sequence architecture for neural machine translation (Sutskever

et al., 2014). We implement their dual encoder architecture as an alternative context-

based interpreter to LM. In this model, separate LSTM encoders are applied on the

context CS and the character encoding of the to-be-interpreted slang S respectively.

The two encoders are then linearly combined using learned parameters:

hencode = hcontextWcontext + hcharWchar + B (4.3)

Here, hcontext and hchar are the final LSTM hidden states from the context encoder

and character-level encoder respectively. Wcontext, Wchar, and B are weights of the

final linear layer to compute the combined state hencode.

The combined state is passed onto an LSTM decoder to train against the corre-

sponding definition sentence in Urban Dictionary (as in the original work of Ni and

Wang 2017). For inference, beam search (Graves, 2012) is applied to decode an n-best

list of candidate definition sentences:

I(S,CS) = arg max
M

DE(M |S,CS) (4.4)

Where DE is the dual encoder neural network.
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4.4 Semantically-informed slang interpretation

4.4.1 Motivation

One key problem with the context-based approach is that it tends to rely on the

contextual features surrounding the target slang but does not model flexible meaning

extensions of the slang word itself. Similar issues are present in a language-model

based approach, whereby one can use an infill model to infer the meaning of a target

slang based solely on its surrounding words. Our work extends these context-based

approaches by jointly considering the contextual and semantic appropriateness of a

slang expression in a sentence, using generative semantic models of slang.

4.4.2 Generative model of slang semantics

From the baseline models, we obtain an n-best list of candidate interpretations K

for the target slang S in context CS. Given this list, we wish to model the semantic

plausibility of each candidate interpretation k ∈ K. Specifically, we ask how likely one

would relate the (conventional meaning of) target slang expression S to a candidate

interpretation k. Similar to slang generation, we model the relationship between a

to-be-expressed meaning and a word form using the prototype model (Rosch, 1975;

Snell et al., 2017). We adapt this model in the context of slang interpretation:

f(k, S) = sim(Ek, ES)

= exp
(
− d(Ek, ES)

hm

)
(4.5)

Ek is an embedding for a candidate interpretation k and ES is the prototypical

conventional meaning of S computed by averaging the embeddings of its conventional

meanings in dictionary (ES):

ES =
1

|ES|
∑

ESi
∈ES

ESi
(4.6)
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The similarity function f can then be computed by taking the negative exponential

of the Euclidean distance (d) between the two resulting semantic embeddings. hm is

a kernel width hyperparameter.

We learn semantic embeddings Ek and ESi
under a max-margin triplet loss scheme,

where embeddings of slang sense definitions (ESL) are brought close in Euclidean

space to those of their conventional sense definitions (EP ) yet kept apart from irrele-

vant word senses (EN) by a pre-specified margin m:

Loss =
[
d(ESL, EP ) − d(ESL, EN) + m

]
+

(4.7)

The resulting contrasive sense encodings are shown to be sensitive to slang semantic

extensions that have been observed during training. We leverage this knowledge to

check whether pairing a candidate interpretation k with the slang expression S is

likely given the common semantic extensions observed in slang usages. The resulting

scores can then be used to rerank the candidate interpretations.

4.4.3 Semanticically-informed reranking

We define a semantic scorer g over the set of candidate interpretations K and the

to-be-interpreted slang S. The candidates are reranked based on the resulting scores

to obtain semantically informed slang interpretations (SSI):

SSI(K) = arg max g(k, S) (4.8)

We define g(K, S) as a score distribution over the set of candidates K given slang S,

where each score is computed by checking the semantic appropriateness of a candidate

meaning k ∈ K with respect to target slang S by querying the semantic model f from

Equation 4.5:

g(k, S) = P (k|S) ∝ f(k, S) (4.9)
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Dataset
# of

unique slang
word forms

# of slang
definition entries

# of context
sentences

# of definitions
in the test set

# of context
sentences in the

test set

OSD 1,635 2,979 3,718 299 405

UD 9,474 65,478 65,478 1,242 1,242

Table 4.1: Summary of dataset statistics for the online slang dictionaries used in the slang interpre-
tation study.

In addition, we apply collaborative filtering (Goldberg et al., 1992) to account for

a small neighborhood of words L(S) akin to the slang expression S in conventional

meaning:

g∗(k, S) ∝
∑

S′∈L(S)

sim(S, S ′)g(k, S ′) (4.10)

sim(S, S ′) = exp
(
− d(S, S ′)

hcf

)
(4.11)

Here, d(S, S ′) is the cosine distance between the word vectors of two slang expres-

sions and hcf is a hyperparameter controlling the kernel width. The collaborative

filtering step encodes intuition from studies in historic semantic change that similar

words tend to extend to express similar meanings (Lehrer, 1985; Xu and Kemp, 2015),

which was found to extend well in the case of slang (see Chapter 3).

4.5 Experimental setup

4.5.1 Datasets

We use two online English slang dictionary resources to train and evaluate our pro-

posed slang interpretation framework: 1) the Online Slang Dictionary (OSD)5 dataset

from Chapter 3 and 2) a collection of Urban Dictionary (UD)6 entries from 1999 to

2014 collected by Ni and Wang (2017). Each dataset contains slang gloss entries

including a slang’s word form, its definition, and at least one corresponding exam-

5OSD: http://onlineslangdictionary.com
6UD: https://www.urbandictionary.com
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ple sentence containing the slang term. We use the same training and testing split

provided by the original authors and only use entries where a corresponding non-

informal entry can be found in the online version of the Oxford Dictionary (OD) for

English,7 which allows the retrieval of conventional senses for all slang expressions

considered. We also filter out entries where the example usage sentence contains none

or more than one occurrences of the corresponding slang expression. When a defini-

tion entry has multiple example usage sentences, we treat each example sentence as

a separate data entry, but all data entries corresponding to the same definition entry

will only appear in the same data split. Table 4.1 shows the size of the datasets after

pre-processing. While OSD contains higher quality entries, UD offers a much larger

dataset. We thus use OSD to evaluate model performance in a low resource scenario

and UD for evaluation of larger neural network based approaches.

4.5.2 Training procedures

4.5.2.1 Baseline Models

We train two context-based slang interpreters described in Section 4.3 as our baseline

models. For the LM-based interpreter, we use a pre-trained language infill model

from Donahue et al. (2020) based on the GPT-2 (Radford et al., 2019) architecture.

Here, we obtain the n-best list of interpretations by retrieving the list of infilled words

with the highest infill probability. Words containing non-alphanumeric characters are

filtered out. For the dictionary lookup function D in Equation 4.2, if a matching

dictionary entry can be found in Oxford Dictionary (OD), the first definition sen-

tence is retrieved as the definition sentence for the input word. Otherwise, the word

itself is used as the definition. In addition to the word’s original form, we apply

lemmatization or stemming to the original form using NLTK (Bird et al., 2009) to

find matching dictionary entries. To check for Part-of-Speech (POS) tags, we apply

the Flair tagger (Akbik et al., 2018) on the context sentence with the slang expression

7OD: https://en.oxforddictionaries.com
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replaced by a mask token and use counts from Histwords (Hamilton et al., 2016) to

determine POS tags for individual words.

To train the Dual Encoder, we use LSTM encoders with 256 and 1024 hidden

units to encode a slang expression’s spelling and its usage context respectively, with

100 and 300 dimensional input embeddings for the characters and words respectively.

Following Ni and Wang (2017), we use random initialization for the input embeddings

and use stochastic gradient descent (SGD) with an adaptive learning rate. We train

the model for 20 epochs beginning with a learning rate of 0.1 and add an exponential

decay of 0.9 every epoch. We reserve 5% of the training examples as a development

set for hyperparameter tuning. We train the model for 20 epochs on a Nvidia Titan

V GPU and takes 12 hours to complete. During inference, we obtain the n-best list of

interpretations by running a beam search of corresponding beam width on the LSTM

decoder.

4.5.2.2 Semantic Reranker

We obtain the contrastive sense encodings (CSE) described in Section 4.4.2 by using

768-dimensional Sentence-BERT (Reimers and Gurevych, 2019) embeddings as our

baseline embedding. We train the contrastive network with a 1.0 margin (m in Equa-

tion 4.7) using Adam (Kingma and Ba, 2015) with a learning rate of 2−5, resulting

in 768-dimensional definition sense representations. We reserve 5% of the training

examples as a development set for hyperparameter tuning. The contrastive models

are trained on a Nvidia Titan V GPU for 4 epochs. The OSD model took 85 minutes

to train and the UD model took 8 hours. We follow the training procedure from

Chapter 3 to estimate the kernel width parameters (hm in Equation 4.5 and hcf in

Equation 4.11) via generative training when it is computationally feasible to do so

and otherwise use 0.1 as our default value.

We check the similarity between two expressions in Equation 4.11 by comparing

their fastText (Bojanowski et al., 2017) embeddings. For collaborative filtering, the
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neighborhood of words L(S) in Equation 4.10 is defined as the 5 closest words (in-

cluding the query word itself) in the dataset’s slang expression vocabulary to the

query word, measured in terms of cosine similarity between their respective fastText

embeddings. We use the list of stopwords from NLTK (Bird et al., 2009) to check

whether a word is a content word. We apply the simple preprocess routine from Gen-

sim (Rehurek and Sojka, 2011) before checking for the degree of content word overlap

between two sentences.

4.5.3 Evaluation methods

We evaluate the semantically informed and baseline interpretation models in a mul-

tiple choice task. In this task, each query is paired with a set of candidate definitions

for the target slang in the query. One of these definitions is the ground-truth meaning

of the target slang, while the other definitions are incorrect, i.e., negative entries sam-

pled from the training set that are all taken from the corresponding slang dictionary.

To score a model, each definition sentence is first compared with the model-predicted

definition by computing the Euclidean distance between their respective Sentence-

BERT (Reimers and Gurevych, 2019) embeddings. The ideal model should produce

a definition that is semantically closer to the ground-truth definition, more so than

the other competing negatives. For each dataset, we sample two sets of negatives.

The first set of negative candidates contains only definition sentences from the train-

ing set that are distinct from the ground-truth definition. We consider two definition

sentences to be distinct if the overlap in the number of content words is less than

50%. The other set of negative definitions is sampled randomly. We measure the

performance of the models by computing the standard mean reciprocal rank (MRR)

of the ground-truth definition’s rank when checked against 4 other sampled negative

definitions.

We train the semantic reranker on all definition entries in the respective training

sets from the two data resources. When training the Dual Encoder, we use 400,431
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Model
Distinctively

sampled
candidates

Randomly
sampled

candidates

Dataset 1: Online Slang Dictionary (OSD)

Language Infill Model (LM Infill) (Donahue et al., 2020), n = 50 0.532 0.502
+ Semantically Informed Slang Interpretation (SSI) 0.557 0.563

Dual Encoder* (Ni and Wang, 2017), n = 5 0.584 0.583
+ SSI 0.592 0.588

Dual Encoder*, n = 50 0.568 0.602
+ SSI 0.616 0.607

* Dual Encoders trained on UD data after filtering out slang

in OSD test set.

Dataset 2: Urban Dictionary (UD) (Ni and Wang, 2017)

LM Infill, n = 50 0.517 0.521
+ SSI 0.569 0.579

Dual Encoder, n = 5 0.556 0.555
+ SSI 0.573 0.572

Dual Encoder, n = 50 0.547 0.550
+ SSI 0.582 0.584

Table 4.2: Evaluation of English slang interpretation measured in mean-reciprocal rank (MRR).
Predictions are ranked against 4 negative candidates distinctively or randomly sampled, yielding an
MRR of 0.457 for the random baseline.

out-of-vocabulary slang entries (i.e., entries with a slang expression that does not

contain a corresponding lexical entry in the standard dictionary) from UD in addition

to the in-vocabulary entries used to train the reranker. This is necessary since the

baseline Dual Encoder performs poorly without a large number of training entries.

Similarly, training the Dual Encoder directly on the OSD training set does not result

in an adequate model for comparison. We instead train the Dual Encoder on all

UD entries and experiment with the resulting interpreter on OSD. Any UD entries

corresponding to words found in the OSD testset are filtered out in this particular

experiment.

4.6 Experimental results

4.6.1 Slang interpretation

Table 4.2 summarizes the multiple-choice evaluation results on both slang datasets. In

all cases, applying the semantically informed slang interpretation framework improves
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the MRR of the respective baselines under both types of negative candidate sampling.

On the UD evaluation, even though the language infill model (LM Infill) is not trained

on this specific task, LM infill based SSI is able to select better and more appropriate

interpretations than the dual encoder baseline, which is trained specifically on slang

interpretation with more than 7 times the number of definition entries for training.

We also find that while increasing the beam size (specified by n) in the sequence-to-

sequence based Dual Encoder model impairs its performance, SSI can take advantage

of the additional variation in the generated candidates and outperform its counterpart

with a smaller beam size.
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[Example 1]

Query (target slang in bold italic): That chick is lit !

Groundtruth definition of target slang: Attractive.

LM Infill baseline prediction: Cute, beautiful, adorable.

LM Infill + SSI prediction: Hot, cool, fat.

Dual Encoder baseline prediction: Another word for bitch.

Dual Encoder + SSI prediction: Word used to describe someone who is very attractive.

[Example 2]

Query: That Louis Vuitton purse is lush !

Groundtruth definition of target slang: High quality, luxurious. (British slang.)

LM Infill baseline prediction: Amazing, beautiful, unique.

LM Infill + SSI prediction: Lovely, stunning, expensive.

Dual Encoder baseline prediction: Something that is cool or awesome.

Dual Encoder + SSI prediction: An adjective used to describe something that is not cool.

[Example 3]

Query (target slang in bold italic): That girl has a donkey.

Ground-truth definition of target slang: Used to describe a girl’s butt in a good way.

LM Infill baseline prediction: Name, crush, boyfriend.

LM Infill + SSI prediction: Horse, dog, puppy.

Dual Encoder baseline prediction: Penis.

Dual Encoder + SSI prediction: Girl with big ass and big boobs.

[Example 4]

Query: I am an onion.

Ground-truth definition of target slang: A native of Bermuda.

LM Infill baseline prediction: Adult, man, athlete.

LM Infill + SSI prediction: Ren, adult, guard.

Dual Encoder baseline prediction: An idiot.

Dual Encoder + SSI prediction: An asian person.

[Example 5]

Query: In Blastem version 4, they really nerf
the EnemyToaster.

Ground-truth definition of target slang: In an update or sequel to a video game, to make a
weapon weak or weaker, such that it’s like a Nerf gun.

LM Infill baseline prediction: Were, called, attack.

LM Infill + SSI prediction: Made, hacked, came.

Dual Encoder baseline prediction: To do something.

Dual Encoder + SSI prediction: To beat someone in the face with your penis.

Table 4.3: Example OSD slang entries with predicted definitions from both the language infill model
(LM Infill) and the Dual Encoder model with n = 50, along with predictions from the corresponding
semantically informed slang interpretation (SSI) models.
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[Example 6]

Query: I heard Steve was sent to the cooler for breaking
and entering.

Ground-truth definition of target slang: Reform school.

LM Infill baseline prediction: School, house, class.

LM Infill + SSI prediction: Bathroom, kitchen, grounds.

Dual Encoder baseline prediction: Slang term for the police.

Dual Encoder + SSI prediction: One of the most dangerous things in the world
the best.

[Example 7]

Query: Do you have any safety

Ground-truth definition of target slang: Marijuana.

LM Infill baseline prediction: Money, friends, cash.

LM Infill + SSI prediction: Self, shoes, money.

Dual Encoder baseline prediction: Marijuana.

Dual Encoder + SSI prediction: Word that is used to describe something that is
very good.

Table 4.4: Continuation of Table 4.3 showing additional interpretation examples.

Table 4.3 and Table 4.4 provides example interpretations predicted by the models.

The lit example shows a case where the semantically informed models were able to

correctly pinpoint the intended definition, among alternative definitions that describe

individuals. The lush example suggests that the SSI model is not perfect and points

to common errors made by the model including predicting definitions that are more

general and applying incorrect semantic extensions. In this case, the model predicts

the slang lush to mean ‘Something that is not cool’ because polarity shift is a common

pattern in slang usage (Eble, 2012), even though the ground-truth definition does not

make such a polarity shift in this specific example.

Note that the improvement brought by SSI is less prominent in the OSD experi-

ment where the Dual Encoder trained on UD was used. This is expected because the

Dual Encoder is trained to generate definition sentences in the style of UD entries,

whereas the SSI is trained on OSD definition sentences instead. The mismatch in

style between the two datasets might have caused the difference in performance gain.
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Model
Distinct

negatives
Random
negatives

LM Zero-shot, n = 50 0.444 0.443
+ SSI 0.571 0.565

LM Few-shot, n = 50 0.504 0.513
+ SSI 0.567 0.564

Table 4.5: Interpretation results on OSD measured in mean-reciprocal rank (MRR) before and after
finetuning the language infill model.

4.6.2 Few-shot slang interpretation

Recent studies in deep learning have shown that large neural network based models

such as GPT-3 excel at learning new tasks in a few-shot learning setting (Brown et al.,

2020). We examine to what extent the superior performance of our SSI framework

may be affected by fine-tuning the LM baseline model in zero-shot and few-shot

scenarios. We fine-tune the language infill model (LM Infill) on the first example

usage sentence that corresponds to each definition entry in the OSD dataset, resulting

in 2,979 sentences. Given an example sentence, we mask out the slang expression and

train the language infill model to predict the corresponding slang term. We randomly

shuffle all examples and fine-tune LM Infill for one epoch. We then compare the

resulting model with the off-the-shelf LM using examples in the test set that were not

used in finetuning (i.e., entries with usage sentences that do not correspond to the

first example usage sentence of a definition entry). This results in 106 novel examples

for evaluation.

Table 4.5 shows the result of this experiment. While finetuning does improve

test performance (a 6 point gain in MRR), it remains beneficial to consider semantic

information in slang context. In both the zero-shot and the few-shot cases, SSI brings

significant performance gain even though SSI itself has not seen examples from the

test set during its training.
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Model
Distinct

negatives
Random
negatives

Dual Encoder, n = 5 0.604 0.598
+ SSI 0.612 0.599

Dual Encoder, n = 50 0.583 0.570
+ SSI 0.627 0.633

Table 4.6: Interpretation results on OSD measured in mean-reciprocal rank (MRR) when training
the Dual Encoder without filtering out entries corresponding to words in the OSD testset.

4.6.3 Effect of Context Length

In the model evaluation described in Section 4.6.1, we control for the content-word

length of the usage context sentence to examine its effect with respect to interpretation

performance for both the baseline and the semantically informed models. Figure 4.3

shows the results partitioned by the number of content words in the example usage

sentence excluding the slang expression, evaluated against four distinctively sampled

candidates. To our surprise, we do not observe any consistent trends when controlling

for context length. Interpretation performance for both the context-based baseline

models and their semantically informed variants is fairly consistent under different

context length.

4.6.4 Finetuning Dual Encoder

We consider the case of finetuning the Dual Encoder by training it on all available UD

data entries and test on the full OSD test set. Under this scenario, the Dual Encoder

model would have seen examples of slang in the OSD test set, though the difference

between the definition sentences and usage examples would not allow it to memorize

the exact answer. While examining how much knowledge can be transfered from one

dataset to another, we also apply the SSI reranker trained on OSD training data on

the fine-tuned results to simulate a stronger baseline model. Table 4.6 shows the

results. When compared to the zero-shot results in Table 4.2, finetuning on entries

corresponding to the same slang, albeit coming from two very different resources,

does noticeably improve interpretation accuracy. Moreover, applying SSI to the im-
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proved interpretation candidates from the fine-tuned Dual Encoder further increases

interpretation accuracy. This finding suggests that the improvement brought by SSI

can indeed generalize in cases where the baseline context-based interpretation model

outputs better interpretation candidates.

4.7 Application in slang translation

We next apply the slang interpretation framework to neural machine translation.

Existing machine translation systems have difficulty in translating source sentences

containing slang usage partly because they lack the ability to properly decode the

intended slang meaning. We make a first attempt in addressing this problem by

exploring whether machine interpretation of slang can lead to better translation of

slang. Given a source English sentence containing a slang expression S, we apply

the LM based slang interpreters to generate a paraphrased word to replace S. The

paraphrased sentence would then contain the intended meaning of the slang in its

literal form. Here, we take advantage of the LM-based approaches’ ability to directly

generate a paraphrase instead of a definition sentence (i.e., without dictionary lookup

D in Equation 4.2), which allows direct insertion of the resulting interpretation into

the original sentence.

4.7.1 Experimental setup

We perform our experiment on the OSD test set because it contains higher quality

example sentences than UD. To mitigate potential biases, we consider only entries

that correspond to single-word slang expressions, and that the slang has not been seen

during training (where the slang attaches to a different slang meaning than the one in

the test set). For the remaining 102 test entries, we obtain ground-truth translations

by first manually replacing the slang word in the example sentence with its intended

definition, condensed to a word or short phrase to fit into the context sentence. We
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then translate the sentences to French and German using machine translation.

We make all machine translations using pre-trained 6-layer transformer networks (Vaswani

et al., 2017) from MarianMT (Tiedemann and Thottingal, 2020), which are trained

on a collection of web-based texts in the OPUS dataset (Tiedemann, 2012). Here,

we select models pre-trained on web-based texts to maximize the baseline model’s

ability to correctly process slang. We evaluate the translated sentences using three

metrics: 1) Sentence-level BLEU scores (Papineni et al., 2002) computed using sen-

tence bleu implementation from NLTK (Bird et al., 2009) with smoothing (method4

in NLTK, Chen and Cherry, 2014) to account for sparse n-gram overlaps; 2) BLEURT

scores (Sellam et al., 2020) computed using the pre-trained BLEURT-20 checkpoint;

3) COMET scores (Rei et al., 2020) computed using the pre-trained wmt20-comet-da

checkpoint. For COMET scores, we replace slang expressions in the source sentences

with their literal equivalents to reduce confusion that the COMET model might have

on slang. This is revelant only to COMET because it takes the source sentence as part

of its evaluation, whereas the BLEU metrics only consider the ground-truth target

sentence.
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[Example 1]

Query (target slang in bold italic): Let’s smoke a bowl of marijuana.
Definition of target slang: a marijuana smoking pipe. Most frequently

bowls are made out of blown glass, but can be
made of metal, wood, etc.

Ground-truth interpreted sentence: Let’s smoke a pipe of marijuana.

Original query sentence translation: Faisons fumer un bol de marijuana.
(BLEU: 78.1, BLEURT: 66.1, COMET: 1.05)

Gold-standard translation: Faisons fumer une pipe de marijuana.

LM Infill interpretation & translation:

(1) Let’s smoke a for of marijuana. Fumons un pour de la marijuana.
(BLEU: 47.1, BLEURT: 20.6, COMET: -0.58)

(2) Let’s smoke a in of marijuana. On fume un peu (little) de marijuana.
(BLEU: 51.6, BLEURT: 64.8, COMET: 0.48)

(3) Let’s smoke a myself of marijuana. Nous allons fumer moi-même de la marijuana.
(BLEU: 51.8, BLEURT: 32.4, COMET: -0.55)

(4) Let’s smoke a or of marijuana. Fumons un ou de marijuana.
(BLEU: 45.4, BLEURT: 32.2, COMET: -1.04)

(5) Let’s smoke a vapor of marijuana. Fumons une vapeur de marijuana.
(BLEU: 56.4, BLEURT: 57.0, COMET: 0.40)

LM Infill + SSI interpretation & translation:

(1) Let’s smoke a pot of marijuana. Faisons fumer un pot de marijuana.
(BLEU: 79.5, BLEURT: 78.8, COMET: 1.15)

(2) Let’s smoke a pipe of marijuana. Faisons fumer une pipe de marijuana.
(BLEU: 100.0, BLEURT: 99.1, COMET: 1.32)

(3) Let’s smoke a pack of marijuana. Faisons fumer un paquet de marijuana.
(BLEU: 77.7, BLEURT: 68.3, COMET: 0.80)

(4) Let’s smoke a leaf of marijuana. Faisons fumer une feuille de marijuana.
(BLEU: 79.9, BLEURT: 48.2, COMET: 1.21)

(5) Let’s smoke a cigarette of marijuana. Faisons fumer une cigarette de marijuana.
(BLEU: 75.7, BLEURT: 81.7, COMET: 1.25)

Table 4.7: Examples of machine translation of slang, without or with the application of the SSI
framework. The top 5 interpreted and translated sentences are shown for each model with BLEU,
BLEURT, and COMET scores against the gold-standard translation shown in parentheses.
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Figure 4.3: Evaluation of slang interpretation performance measured in mean-reciprocal rank (MRR)
for all models with n = 50. Test entries are partitioned based on the number of content words (ex-
cluding the slang expression itself) found within the corresponding example usage sentence. Number
of entries corresponding to each context length is shown in parenthesis on the x-axis legend.
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Figure 4.4: Translation scores of translated sentences with the slang replaced by n-best interpre-
tations. Curves show sentence-level BLEU, BLEURT, and COMET scores of the best translation
within the top-n retrievals. Aggregate scores integrated over the first 20 retrievals are shown in
parenthesis. Baselines are obtained by directly translating the original sentence containing slang.
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[Example 2]

Query: That band was so totally vast.
Definition of target slang: Cool or anything good.
Ground-truth interpreted sentence: That band was so totally cool.

Original query sentence translation: Ce groupe était si vaste.
(BLEU: 53.2, BLEURT: 32.9, COMET: -0.59)

Gold-standard translation: Ce groupe était tellement cool.

LM Infill interpretation & translation:

(1) That band was so totally popular. Ce groupe était tellement populaire.
(BLEU: 74.5, BLEURT: 78.7, COMET: 0.43)

(2) That band was so totally good. Ce groupe était si bon.
(BLEU: 51.8, BLEURT: 77.0, COMET: 0.32)

(3) That band was so totally different. Ce groupe était complètement différent.
(BLEU: 57.2, BLEURT: 50.3, COMET: -0.07)

(4) That band was so totally famous. Ce groupe était si célèbre.
(BLEU: 54.4, BLEURT: 66.2, COMET: -0.21)

(5) That band was so totally new. Ce groupe était totalement nouveau.
(BLEU: 64.2, BLEURT: 50.2, COMET: -0.21)

LM Infill + SSI interpretation & translation:

(1) That band was so totally huge. Ce groupe était tellement énorme.
(BLEU: 81.1, BLEURT: 56.0, COMET: 0.15)

(2) That band was so totally big. Ce groupe était tellement grand.
(BLEU: 83.0, BLEURT: 50.7, COMET: -0.19)

(3) That band was so totally important. Ce groupe était si important.
(BLEU: 55.9, BLEURT: 49.9, COMET: -0.58)

(4) That band was so totally cool. Ce groupe était tellement cool.
(BLEU: 100.0, BLEURT: 97.9, COMET: 1.29)

(5) That band was so totally bad. Ce groupe était si mauvais.
(BLEU: 52.3, BLEURT: 62.9, COMET: -0.48)

Table 4.8: Continuation of Table 4.7. Examples of machine translation of slang.
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[Example 3]

Query (target slang in bold italic): Man, I ain’t been to that place in a
fortnight!

Definition of target slang: An unspecific, but long-ish length of time.
Ground-truth interpreted sentence: Man, I ain’t been to that place in a

long time!

Original query sentence translation: Je ne suis pas allé à cet endroit en
une quinzaine!
(BLEU: 36.1, BLEURT: 61.2, COMET: 0.57)

Gold-standard translation: Je n’y suis pas allé depuis longtemps!

LM Infill interpretation & translation:

(1) Man, I ain’t been to that place in a while! Je ne suis pas allé à cet endroit depuis
un moment !
(BLEU: 46.9, BLEURT: 76.5, COMET: 0.88)

(2) Man, I ain’t been to that place in a million! Je ne suis pas allé à cet endroit dans
un million!
(BLEU: 38.8, BLEURT: 25.1, COMET: -1.17)

(3) Man, I ain’t been to that place in a both! Je ne suis pas allé à cet endroit dans
les deux !
(BLEU: 42.2, BLEURT: 25.7, COMET: -0.98)

(4) Man, I ain’t been to that place in a vanilla! Mec, je n’ai pas été à cet endroit dans
une vanille!
(BLEU: 16.2, BLEURT: 7.3, COMET: 1.53)

(5) Man, I ain’t been to that place in a ignment ! Mec, je n’ai pas été à cet endroit dans
un ignement !
(BLEU: 16.2, BLEURT: 12.7, COMET: -1.31)

LM Infill + SSI interpretation & translation:

(1) Man, I ain’t been to that place in a week ! Je ne suis pas allé à cet endroit en une
semaine!
(BLEU: 38.2, BLEURT: 49.8, COMET: 0.45)

(2) Man, I ain’t been to that place in a minute! Je ne suis pas allé à cet endroit en une
minute!
(BLEU: 38.8, BLEURT: 42.5, COMET: -0.36)

(3) Man, I ain’t been to that place in a hour ! Je ne suis pas allé à cet endroit en une
heure!
(BLEU: 38.7, BLEURT: 35.8, COMET: -0.51)

(4) Man, I ain’t been to that place in a decade! Je n’y suis pas allé depuis une décennie
(BLEU: 68.8, BLEURT: 81.8, COMET: 1.03)

(5) Man, I ain’t been to that place in a day ! Je ne suis pas allé à cet endroit en une
journée!
(BLEU: 37.1, BLEURT: 49.7, COMET: -0.30)

Table 4.9: Continuation of Table 4.8. Examples of machine translation of slang.
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[Example 4]

Query: I want to go get coffee but it’s bitter
outside.

Definition of target slang: Abbreviated form of bitterly cold.
Ground-truth interpreted sentence: I want to go get coffee but it’s bitterly

cold outside.

Original query sentence translation: Je veux aller prendre un café mais c’est
amer dehors.
(BLEU: 65.0, BLEURT: 59.8, COMET: 0.77)

Gold-standard translation: Je veux aller prendre un café, mais il fait
très froid dehors.

LM Infill interpretation & translation:

(1) I want to go get coffee but it’s raining outside. Je veux aller prendre un café mais il pleut
dehors.
(BLEU: 68.1, BLEURT: 79.9, COMET: 0.97)

(2) I want to go get coffee but it’s closed outside. Je veux aller prendre un café mais il est
fermé dehors.
(BLEU: 70.7, BLEURT: 53.9, COMET: -0.15)

(3) I want to go get coffee but it’s pouring outside. Je veux aller chercher du café, mais ça
textitcoule dehors.
(BLEU: 51.9, BLEURT: 31.6, COMET: -0.38)

(4) I want to go get coffee but it’s been outside. Je veux aller prendre un café, mais ça a
été dehors.
(BLEU: 68.4, BLEURT: 27.1, COMET: -0.88)

(5) I want to go get coffee but it’s starting outside Je veux aller prendre un café, mais ça
commence dehors.
(BLEU: 68.5, BLEURT: 31.0, COMET: -0.57)

LM Infill + SSI interpretation & translation:

(1) I want to go get coffee but it’s cold outside. Je veux aller prendre un café, mais il fait
froid dehors.
(BLEU: 90.3, BLEURT: 92.7, COMET: 1.20)

(2) I want to go get coffee but it’s warm outside. Je veux aller prendre un café mais il fait
chaud dehors.
(BLEU: 78.1, BLEURT: 79.1, COMET: 1.12)

(3) I want to go get coffee but it’s driving outside. Je veux aller prendre un café mais il
conduit dehors.
(BLEU: 70.4, BLEURT: 26.5, COMET: -0.69)

(4) I want to go get coffee but it’s closing outside. Je veux aller prendre un café mais il se
ferme dehors.
(BLEU: 69.8, BLEURT: 23.2, COMET: -0.81)

(5) I want to go get coffee but it’s dark outside. Je veux aller prendre un café, mais il fait
noir dehors.
(BLEU: 82.3, BLEURT: 73.7, COMET: 0.80)

Table 4.10: Continuation of Table 4.9. Examples of machine translation of slang.
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4.7.2 Results

Figure 4.4 summarizes the results. Overall, the semantically informed approach tends

to outperform the baseline approaches for the range of top retrievals (from 1 to 20)

under all three metrics considered, with the exception of BLEURT evaluated on Ger-

man where the semantically informed approach gives very similar performance as the

language model baseline. While not all predicted interpretations correspond to the

ground-truth definitions, the set of interpreted sentences often contain plausible in-

terpretations that result in improved translation of slang. Table 4.7 to 4.10 provide

some example translations. We observe that quality translations can be found reli-

ably with a small number of interpretation retrievals (i.e., around 5) and the quality

generally improves as we retrieve more candidate interpretations. However, it is still

difficult to make a notable improvement with a single retrieval and machine transla-

tion of slang remains an open problem. Nevertheless, our approach may be integrated

with a slang detector (e.g., Pei et al. 2019) to recommend high-quality translations

in natural context that involves slang.

4.8 Conclusion

We have presented the first principled framework for automated slang interpretation

that takes into account both contextual information and knowledge about semantic

extensions of slang usage. We showed that our framework is more effective in inter-

preting and translating the meanings of English slang terms in natural sentences in

comparison to existing approaches that rely more heavily on context to infer slang

meaning. Future work could explore incorporating prior information into the inter-

pretation framework. For example, the frequency of concepts expressed by slang, for

that slang tends to express concepts such as drug and sex very frequently (Green,

2010; Eble, 2012).



Chapter 5

Semantic variation in slang

The contents of this chapter are based on my previous publication (Sun and Xu, 2022).

5.1 Motivation

Our computational framework thus far assumes that the same set of word-meaning

associations of slang apply universally to all language users. However, the use of slang

is often restricted to a specific group of users—a defining characteristic of slang that

causes the meaning of a slang term to vary in different communities (Andersson and

Trudgill, 1992; Mattiello, 2005; Eble, 2012). However, semantic variation in slang

remains an under-explored topic in natural language processing and no formal model

of the variation process has been proposed. This chapter explores semantic variation

in slang by focusing on characterizing regularity in the geographical variation of slang

usages attested in the US and the UK over the past two centuries. We show how

the modeling of slang as sense extension can help explain the driving forces behind

semantic variation in slang.

We define semantic variation in slang as the difference in meaning of a slang term

across different communities. For example, Figure 5.1 shows an example where the

commonly-used slang word beast has divergent meanings in different regions (or more

specifically, two different countries in this case). Whereas it is more often used to

95
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beast

2011: An outstanding example.

“You’re a beast, man. You nailed that sucker.”

1954: A fast car.

1982: Subway No. 2 of NYC.

1997: Excellent.

1837: An unpleasant person.

1877: A sexual offender.

1898: A bicycle.

Figure 5.1: Illustration of semantic variation in the slang word beast, with senses recorded in Ameri-
can and British English respectively. We develop models of semantic variation in slang and evaluate
them on a region-inference task: For a newly emerged slang sense, infer its regional identity given
the slang term’s historical usages from different regions.

express positive things or sentiment in the US, the same slang word has been used to

express more negative senses in the UK.

Recent work has quantified semantic variation in non-standard language of online

communities using word and sense embedding models and discovered that commu-

nity characteristics (e.g., community size, network density) are relevant factors in

predicting the strength of this variation (Del Tredici and Fernández, 2017; Lucy and

Bamman, 2021). However, it is not clear how slang senses vary among different

communities and what might be the driving forces behind this variation.

As an initial step to model semantic variation in slang, we focus on regional se-

mantic variation between the US and the UK by considering a regional inference task

illustrated in Figure 5.1: Given an emerging slang sense (e.g., ‘An outstanding ex-

ample’) for a slang word (e.g., beast), infer which region (e.g., US vs. UK) it might

have originated from based on its historical meanings and usages. Our premise is that
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a model capturing the basic principles of semantic variation in slang should be able

to trace or infer the regional identities of emerging slang meanings over time. Our

experiments focus on the regional semantic variation between the US and the UK but

the proposed models are widely applicable to the modeling of semantic variation in

slang across more fine-grained communities.

5.2 Theoretical Hypotheses

We consider two theoretical hypotheses for characterizing regularity in semantic vari-

ation in slang: communicative need and semantic distinction. We evaluate these

theories using slang sense entries from Green’s Dictionary of Slang (GDoS, Green,

2010) over the past two centuries. Analysis on GDoS entries is appropriate because

1) a more diverse set of topics is covered compared to domain-specific slang found in

online communities (e.g., Reddit), and 2) the region and time metadata associated

with individual sense entries support a diachronic analysis on the semantic variation

in slang. To preview our results, we show that both communicative need and se-

mantic distinction are relevant factors in predicting semantic variation in slang, with

an exemplar-based chaining model offering the most robust results overall. Mean-

while, the relative importance of the two factors is time-dependent and fluctuates

over different periods of history.

5.2.1 Communicative need

Prior work has suggested that slang may be driven by culture-dependent commu-

nicative need (Sornig, 1981). We refer to communicative need as how frequently a

meaning needs to be communicated or expressed within a given community. Fol-

lowing recent work (e.g., Kemp and Regier 2012; Ryskina et al. 2020), we estimate

communicative need based on usage frequencies from Google Ngram1 over the past

1https://books.google.com/ngrams

https://books.google.com/ngrams
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two centuries.2 In the context of semantic variation in slang, certain things might be

more frequently talked about in one region (or country) over another. As such, we

might expect these differential needs to drive meaning differentiation in slang terms.

For example, a US-specific slang sense for beast describes the subway line No. 2 of

the New York City transit network. The need to communicate this specific subway

line was presumably high in the US due to frequent crime cases on the train.3 On

the other hand, this sense would not be relevant to residents of the UK given its

specificity to an US entity.

5.2.2 Semantic distinction

We also consider an alternative hypothesis termed semantic distinction motivated by

the social functions of slang (cf. Labov, 1972; Hovy, 1990)—language that is used

to show and reinforce group identity (Eble, 2012). Under this view, slang senses

may develop independently in each region and form a semantically cohesive set of

meanings that reflect the cultural identity of a region. As a result, emerging slang

senses are more likely to be in close semantic proximity with historical slang senses

from the same region.4 For example, the slang beast has many senses in the US that

describe something virtuous while senses in the UK often describe criminals. An

emerging sense such as ‘An outstanding example’ would be considered more likely to

originate from the US due to its similarity with the historical US senses of beast. Here

we operationalize semantic distinction by models of semantic chaining from work on

historical word meaning extension (Ramiro et al., 2018; Habibi et al., 2020), where

each region develops a distinct chain of related regional senses over history.

2We acknowledge that experiment-based methods for estimating need exist (see Karjus et al., 2021), but these
alternative methods are difficult to operationalize at scale and in naturalistic settings required for our analysis.

3https://www.barrypopik.com/index.php/new_york_city/entry/the_beast_2_subway_line
4It is worth nothing that communicative need and semantic distinction may not be completely orthogonal. In

fact, differences in communicative need may drive semantic distinction. However, we consider these hypotheses as
alternative ones because they are motivated by different functions.

https://www.barrypopik.com/index.php/new_york_city/entry/the_beast_2_subway_line


CHAPTER 5. SEMANTIC VARIATION IN SLANG 99

Category Tags

Slang Cockney, informal, slang, vulgar

US Boston, California, Florida, Louisiana, Maine, Midwestern-US, New-Jersey,
New-York, New-York-City, North-America, Northern-US, Pennsylvania,
Philadelphia, Southern-US, Texas, US, Virginia, in US, in US and Canada,
in US usually formal, in the US

UK Britain, British, Cornwall, Derbyshire, Devon, East-Anglia, England, Kent,
Liverpudlian, Mackem, Midlands, Multicultural-London-English, Norfolk,
Northern-England, Northern-English, Northumbria, Orkney, Oxford,
Pembrokeshire, Scotland, Shetland, Teesside, Tyneside, UK, Ulster, Wales,
West-Midlands, Yorkshire, in Britain, in UK, of England

Table 5.1: Wiktionary metadata tags used to determine whether a sense is a slang or belongs to US
or UK.

5.3 Quantifying variation in slang

5.3.1 Slang vs. conventional

We first compare slang with conventional language by counting the number of sense

entries in the English Wiktionary.5 We extract all word entries using WikExtract (Ylo-

nen, 2022) and only consider those that have 1) at least one slang sense and 2) senses

in both US and UK. We determine whether a sense is regional and/or slang using

metadata tags associated with each sense. Table 5.1 shows the full list of tags used.

If one of the tags is found in the metadata, then the entry is considered part of the

corresponding category. Entries with both US and UK tags are considered neither US-

specific nor UK-specific. We obtain 810 slang words after filtering using the criteria

above which contain 8,769 conventional senses and 1,262 slang senses. The proportion

of senses with regional tags is shown in Figure 5.2, confirming that semantic variation

is much more prevalent in slang compared to conventional language.

5.3.2 Regional slang

5.3.2.1 Data collection

We collect slang lexical entries from Green’s Dictionary of Slang (GDoS, Green,

2010),6 a historical English slang dictionary covering more than two centuries of slang

5https://en.wiktionary.org/
6https://greensdictofslang.com/

https://en.wiktionary.org/
https://greensdictofslang.com/
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Figure 5.2: Distribution of regional identities among sense entries found in the English Wiktionary.

usage. Each word entry (e.g., beast) in GDoS is associated with one or more sense

entries. We consider each sense entry as a data point in our analysis. A sense entry

contains a definition sentence (e.g., ‘An outstanding example.’) and a series of refer-

ences. Each reference contains a region tag (e.g., US or UK), a date tag (e.g., 2011),

and a sentence indicating the origin of the reference. In some cases, the reference

contains an example usage sentence of how the slang is used in context.7

We collect all sense entries with at least one valid reference. A reference is con-

sidered valid if both its region tag and date tag are not missing nor invalid. For each

reference, we automatically extract the associated context sentence and consider one

to be valid if it contains precisely one exact occurrence of the word in the sentence.

If a valid context sentence is found then it is attached to the corresponding reference.

The resulting sense entry may have none or more than one context sentences. In the

latter case, we select the context sentence with the earliest time tag to be associated

with the sense entry, so that it best represents the usage context of when the sense

first emerges. The earliest time tag found in the references is considered the time

of emergence for a sense entry. We filter all abbreviation entries as these entries

don’t create new meaning. In the case of a homonym (i.e., multiple word entries

7We choose GDoS over alternative resources (e.g., Lewin and Lewin, 1988; Dalzell and Partridge, 2009; Ayto and
Simpson, 2010) because it covers a diverse set of slang usages from different regions and time periods.
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Figure 5.3: The distribution of GDoS slang senses and word forms across different regions. A word
or sense is considered shared if two or more distinct region tags can be found in the constituent
references.

for the same word form), we collapse all entries into a single word entry. After pre-

processing, we obtain 42,758 distinct words with 76,650 associated sense entries. On

average, each sense entry contains 4.48 tags of attested time and region. We provide

our pre-processing script in our Github repository8 to facilitate reproduciblility.

5.3.2.2 Data analysis

We first analyze entries collected from GDoS to quantify semantic variation. For each

sense entry, we determine its regional identity using the region tags associated with

each reference. Note that there may be more than one valid region tag associated

with each sense entry. In such cases, we consider the sense entry to be a shared sense

across all constituent region tags. Otherwise, the sense entry is considered regional.

Likewise, a word entry is considered shared if two or more distinct region tags can be

found among any of its sense’s references.

Figures 5.3a and 5.3b show the distribution of region identities across all sense and

word entries in GDoS. We observe substantial lexical variation within the data where

more than half of the word forms are regional. While most of the sense entries are also

regional, many of them may be associated with regional word forms. In this case,

the variation is caused by difference in lexical choice and does not entail semantic

8Code and data scripts available at: https://github.com/zhewei-sun/slangsemvar

https://github.com/zhewei-sun/slangsemvar
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variation. We control for lexical variation by only considering sense entries associated

with shared word forms. This results in 48,565 sense entries with an average of 5.80

tags per entry. Figure 5.3c shows the distribution of the resulting region identities.

We observe that even after controlling for lexical variation, roughly half of the senses

remain regional. Moreover, much of the semantic variation is captured by the US and

UK regions, with Australian slang also making up a notable portion. We therefore

focus on modeling semantic variation between the two most represented regions.

5.4 Models of semantic variation in slang

5.4.1 Predictive task

We model semantic variation by formulating a regional inference task: Given an

emerging slang sense s for a word w, infer the region r ∈ R from which the emerging

sense originates. Here, R is the set of regions being considered and an example would

be the set {US, UK}. A semantic variation model V is then defined as follows:

P (r) ∝ V(s, w, r) (5.1)

Here, the semantic variation model V captures the likelihood of observing the emerg-

ing slang sense s expressed using word w within region r and can be either generative

or discriminative in nature. Given the semantic variation model, the target region

can be predicted by maximizing the likelihood:

r∗ = arg max
r∈R

V(s, w, r) (5.2)

An effective semantic variation model would prefer regions that are more likely for

the new sense to emerge. We next describe models of semantic variation V motivated

by both communicative need and semantic distinction.
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5.4.2 Models based on communicative need

We first describe a set of semantic variation models V inspired by the communica-

tive need principle. Under this hypothesis, language users in different communities

need differing expressions to express concepts of particular interest to the commu-

nity (Sornig, 1981). We operationalize communicative need using frequency statistics

of historical corpora from each region. First, we propose a form frequency model that

considers the frequency of the slang word form w:

Vform frequency(s, w, r) ∝ f(w; r, st − α : st) (5.3)

Here, f(w; r, st − α : st) is the frequency of observing word w from region r within

a time window α strictly preceding the sense’s time of emergence st. Note that the

form frequency model does not take into account any semantic information from the

emerging sense s and simply estimates whether the word form w is more prevalent in

one region.

The semantic need model incorporates semantic information by checking the fre-

quency of all content words within the definition sentence sd of sense s:

Vsemantic need(s, w, r) ∝
∑

c∈content(sd)

f(c; r, st − α : st) (5.4)

Words in the sense definition sentence reflect concepts that are highly relevant to the

slang’s intended meaning. The semantic need model thus quantifies the need for these

concepts with respect to each community.

The context need model is informed by the usage context sentence sc of sense s:

Vcontext need(s, w, r) ∝
∑

c∈content(sc)\w

f(c; r, st − α : st) (5.5)

We remove the word w since it is not part of the context. The context need model

checks the communicative context to estimate contextual relevance with respect to
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each region. Specifically, it takes into account the concepts that co-occur with the

slang usage and their respective need in each community.

Both of the above models can also be framed as a majority vote model instead of

taking a sum of frequencies:

V(s, w, r) ∝
∑
c


1, if maxr′ f(c; r′, st − α : st) = f(c; r, st − α : st).

0, otherwise.

(5.6)

Here, c is the set of content words relevant to each model. For each content word,

a “vote” is contributed to a community if the corresponding word frequency is the

highest among all communities. We find the majority vote scheme to be robust in

our experiments as frequency counts of common words could otherwise dominate the

estimates.

5.4.3 Models based on semantic distinction

Slang semantics may also diverge due to its social function, where language users

in a community wish to create distinct senses to express their social identity (Eble,

2012). As a result, slang senses from different communities might evolve into cohesive

but distinct clusters. For example, many slang senses of beast are used to express

positive concepts in the US but negative ones in the UK. Here, the cluster of senses are

internally conhesive (i.e., many US senses describing positive concepts) but distinct

across the two communities (i.e., positive vs. negative connotations for US vs. UK).

Motivated by this hypothesis, we model semantic variation using historical slang

senses associated with the word w in a region r that emerged before st, denoted as

Sw,st,r. Under this paradigm, the semantic variation model V can be specified as

follows:

Vdistinction(s, w, r) ∝ g(s,Sw,st,r) (5.7)
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Here, the function g can be viewed as a classifier that measures the categorical sim-

ilarity between the emerging sense s and historical senses from region r. We model

g generatively using semantic chaining models from historical word sense extension

which are motivated by mechanisms of human categorization (Rosch, 1975; Nosof-

sky, 1986).9 We adapt three prominent variants of semantic chaining from Ramiro

et al. (2018): 1) the one nearest neighbor (onenn) model that only considers the

most similar historical sense; 2) the mean exemplar model that accounts for all his-

torical senses; and 3) the prototype model which collapses all historical senses into

a single prototypical sense. When performing chaining, each sense is represented by

embedding its corresponding definition sentence sd using a sentence embedder E:

gonenn(s, w, r) = max
s′∈Sw,st,r

sim(E(sd), E(s′d)) (5.8)

gexemplar(s, w, r) =
1

|Sw,st,r|
∑

s′∈Sw,st,r

sim(E(sd), E(s′d)) (5.9)

gprototype(s, w, r) = sim

(
E(sd),

1

|Sw,st,r|
∑

s′∈Sw,st,r

E(s′d)

)
(5.10)

The similarity between two sense embeddings is computed using negative exponenti-

ated distance with a learnable kernel width parameter h:

sim(e, e′) = exp
(
− ||e− e′||22

h

)
(5.11)

When data is available, the kernel width parameter h can be optimized by construct-

ing training examples from the full set of historical senses Sw,st

9Sentential context can be potentially integrated to achieve higher accuracies but here we focus on senses alone to
examine the effect of semantic cohesiveness operationalized by cognitively motivated modeling approaches.
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k
Word
entries

US
senses

UK
senses

Shared
senses

Test
set

3 388 3273 1889 2007 1722

4 209 2063 1263 1272 1200

5 114 1342 827 877 788

6 64 842 550 577 548

7 44 627 423 446 424

8 30 455 316 337 310

9 21 286 239 240 230

10 14 192 176 156 162

Table 5.2: Number of GDoS word and sense entries obtained after constraining the minimum number
of regional senses per region (k). Senses are divided into regional and shared based on region tags
associated with sense references. The last column shows the sizes of the test sets where each is
composed of an equal number of test senses from each region.

5.5 Experiments

5.5.1 Setup

We test our semantic variation models on region inference using GDoS word entries

that show high regional variation in their senses. Specifically, we consider all word

entries with at least k regional senses that have emerged after 1800 in each region of

interest. We consider k ∈ [3, 10] and Table 5.2 shows the number of words and senses

that match the criteria for each k when considering {US, UK} as the set of regions.

All senses emerged after 1900 are treated as a time series of test examples. For

example, all senses of a word that emerged before 1900 will be used as historical senses

when predicting the region for the first sense post 1900 and this sense will then be

considered as a historical sense when making a prediction for the subsequent sense.

Word entries with sparse regional senses (i.e., k = 1 or k = 2) are excluded because

they often result in uninformative test examples where not a single slang usage in one

region is available prior to 1900.

Since there are often a disproportionate number of test senses between the two

regions, we create class-balanced test samples by subsampling eligible test senses in

each time series. For example, a word entry with 5 US sense entries and 3 UK sense

entries emerged after 1900 will result in 6 test examples where 3 out of the 5 US
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senses are randomly sampled while all UK senses are kept. Even if a sense entry has

not been sampled for prediction, it will still appear in the history when predicting

subsequently emerged senses. The last column of Table 5.2 shows the sizes of the

class-balanced test samples where half of the sense entries come from each region. To

account for all senses in the data, we repeat the sampling procedure 20 times in all of

our experiments and report the mean predictive accuracy. Word lists for each k can

be found in our Github repository.

We use case-insensitive normalized frequency from the 2019 version of Google

Ngram’s “American English” and “British English” corpora to estimate word fre-

quencies for all communicative need models and set the window size α to 10 years.

The list of stopwords from NLTK (Bird et al., 2009) is used to filter for content words.

We apply additive smoothing of 1e−8 and 1 to normalized frequency and majority

vote models respectively. In the case of a tie, the model defaults to predicting US.

For semantic distinction based models, sense embeddings are obtained by embed-

ding their respective definition sentences from GDoS using Sentence-BERT (SBERT,

Reimers and Gurevych, 2019). In addition to the semantic chaining models, we

include LDA and logistic regression as discriminative baselines for the classifier g in

Equation 5.7 where each sense’s definition sentence is encoded using SBERT and used

as the feature vector. We also include a sense frequency baseline that always predicts

the most frequent sense tag observed in the historical senses. When all historical

senses correspond to a single region label, then that label is taken as the prediction

for all semantic distinction models.

To train the kernel width parameter in semantic chaining (i.e., h in Equation 5.11),

we consider all historical senses as a time series and train on as many predictions as

data allows. For example, if a list of senses emerged prior to the to-be-predicted

sense, then we iterate through these senses in their order of emergence. As soon as

there is an observation from each class, chaining probabilities are estimated and the

negative log-likelihood of the corresponding region is included in the loss function for
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No shared senses With shared senses
Model US senses UK senses All senses US senses UK senses All senses

Form frequency 49.9 (1.20) 50.7 (0.20) 50.3 (0.57)
Semantic need 54.0 (1.77) 50.1 (0.43) 52.1 (0.91) Not applicable
Context need 65.9 (1.37) 43.8 (0.46) 54.8 (0.67)

Sense frequency 55.9 (1.44) 34.1 (0.26) 45.0 (0.75) 59.2 (1.33) 34.0 (0.27) 46.6 (0.66)
LDA 51.7 (1.37) 45.3 (0.35) 48.5 (0.73) 54.7 (1.46) 45.5 (0.50) 50.1 (0.81)
Logistic reg. 52.5 (1.57) 40.0 (0.35) 46.2 (0.84) 56.5 (1.24) 39.3 (0.32) 47.9 (0.64)

Onenn 60.9 (1.35) 53.0 (0.42) 56.9 (0.71) 72.4 (1.32) 38.0 (0.41) 55.2 (0.64)
Exemplar 60.1 (1.31) 57.8 (0.40) 58.9 (0.70) 60.0 (1.66) 58.6 (0.38) 59.3 (0.85)
Prototype 57.6 (1.38) 53.1 (0.37) 55.4 (0.77) 60.3 (1.71) 54.7 (0.30) 57.5 (0.88)

Table 5.3: Mean percentage accuracy of all models on the region tracing task for post 1900 senses
associated with words that have at least 5 regional senses in each region (US and UK; k = 5).
Standard deviation of accuracies taken across 20 test samples is shown in parenthesis. The right-
hand side shows the results after including shared senses in both training and prediction.

optimization. We use L-BFGS-B (Byrd et al., 1995) to optimize the kernel width

with a default value of 1 and a bound in [0.01, 100].

5.5.2 Inferring regional identity of slang

We now evaluate both the communicative need and semantic distinction based se-

mantic variation models on the regional inference task. Table 5.3 shows the mean

predictive accuracy of all models on the k = 5 test set. For communicative need,

we observe that both the semantic need and context need models made better pre-

dictions than the simple form frequency model and the random baseline (i.e., 50%

accuracy). For semantic distinction, the chaining models consistently outperform

both the random baseline and the discriminative classifiers.

Since only a few historical senses are available for training, the standard classifiers’

(LDA and logistic regression) suffers from data sparsity which result below-baseline

performance. Meanwhile, both models of slang variation are able to leverage enriched

data points from history to perform well in a few-shot setting. Indicated by poor

performance from the sense frequency baseline, we observe no discernible patterns in

the emergence trajectory of senses across regions when the content of the slang usage

is disregarded. In line with previous applications of semantic chaining to linguistic
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categories (Habibi et al., 2020; Yu and Xu, 2021), we also find exemplar-based chaining

performing the best among alternative chaining models, suggesting that regional slang

senses tend to form cohesive neighborhoods in the underlying semantic space. Both

the exemplar and prototype models also tend to rely less on sense frequency and

produce more balanced predictive accuracies across the two regions.

We also consider the inclusion of shared senses in addition to their regional coun-

terparts. As shown in Table 5.2, shared senses account for a large portion of the sense

inventory that could result in more data. For each shared sense, we track its list of

references to determine its regional identity at a particular point in history. For ex-

ample, a sense containing a US reference in 1930 and a UK reference in 1940 would be

considered US exclusive when used to predict the region of a sense emerging between

1930 and 1940. Senses with shared regional identities (e.g., the aforementioned sense

after 1940) are considered by both regional categories in semantic chaining models to

obtain more accurate kernel width estimates. We observe better model performance

in all models that consider historical senses after including shared senses. Introduc-

ing shared senses most notably improved the prototype model where more senses

arguably led to more accurate estimates of the prototypical senses.

Figure 5.4 shows the predictive accuracy of the best performing models over all

samples of k. Overall, both communicative need and semantic distinction models are

able to capture a notable amount of variation in the data, with the semantic chaining

based models giving the best predictability. Also, the advantage of chaining-based

models over frequency-based models diminishes for more polysemous slang (which

presumably is also more frequently used). This suggests that as a slang obtains more

senses, its set of senses becomes less cohesive and the slang word is more likely to be

used to express concepts with high communicative need that are more coarsely related

to its historical meaning. An alternative explanation is that those historical senses

become conventionalized or dismissed over history and are thus no longer relevant in

the emergence of new slang senses. Next, we test this hypothesis by constraining the
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Figure 5.4: Predictive accuracy of the best performing models relative to the minimum number
of regional senses (k) in sampled word entries. All shared historical senses are used in semantic
chaining.

Model US senses UK senses AUS senses All senses

[No shared senses]

Sense frequency 58.4 (2.58) 25.3 (1.95) 4.8 (0.78) 29.5 (1.01)
LDA 58.1 (3.56) 23.4 (1.42) 11.8 (1.29) 31.1 (1.38)
Logistic reg. 54.3 (3.33) 25.5 (1.74) 10.1 (1.08) 30.0 (1.34)

Onenn 52.4 (2.80) 26.2 (1.75) 28.3 (1.52) 35.6 (1.15)
Exemplar 42.1 (3.22) 30.7 (1.52) 38.9 (1.68) 37.2 (1.34)
Prototype 50.4 (3.26) 29.4 (1.71) 22.4 (1.64) 34.0 (1.34)

[With shared senses]

Sense frequency 54.3 (2.85) 31.3 (1.58) 1.2 (0.42) 28.9 (1.11)
LDA 40.5 (3.28) 23.4 (1.42) 11.8 (1.29) 25.3 (1.21)
Logistic reg. 56.5 (2.97) 26.5 (1.74) 7.8 (1.11) 30.2 (1.17)

Onenn 67.9 (2.74) 23.1 (2.17) 23.0 (1.03) 38.0 (1.21)
Exemplar 45.1 (3.06) 27.0 (1.49) 49.3 (1.70) 40.5 (1.32)
Prototype 51.7 (3.50) 32.1 (1.95) 31.7 (1.20) 38.5 (1.56)

Table 5.4: Mean percentage accuracy of all models on the region tracing task for post 1900 senses
associated with words that have at least 3 regional senses in each region (US, UK and AUS; k = 3).
Standard deviation of accuracies taken across 20 test samples is shown in parenthesis.

number of senses considered in the chaining models.

Finally, we consider a 3-way classification experiment involving Australian slang,
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which makes up a small but notable portion of GDoS. Here, we only consider words

with at least 3 regional senses (i.e., k = 3) due to data sparsity. Also, communicative

need models are not evaluated because frequency statistics are not available for the

Australian region on Google Ngram. We find 44 word entries that match the criteria

with 395, 254, and 167 regional entries for US, UK, and Australia respectively. We

also include 467 shared senses similar to the experiment described in Section 5.5.2.

We sample class-balanced test sets and obtain 309 examples evenly divided among

the 3 regions. We repeat this sampling procedure 20 times to account for all senses.

Table 5.4 shows the results. We observe similar trends as in the US and UK only

case where the semantic chaining models substantially outperform all baselines. The

exemplar model achieves the highest predictive accuracy both overall and on the

Australian test cases despite the set of Australian historical senses being less frequent

than the others.

5.5.3 Memory in semantic variation

Slang senses are known to be short-lived and become conventionalized or dismissed

over time (Eble, 1989). We measure to what extent historical senses are relevant in

the process of variation. We do so by constraining the number of historical senses

seen by the chaining models based on their year of emergence. We focus on the k = 5

case and find that without a memory constraint, the average age of historical senses

ranges from 36.8 years for test senses in the 1910s to 73.7 years for those in the 2010s.

Figure 5.5 shows the mean predictive accuracy for all chaining models after removing

historical senses that exceed the memory threshold. To preserve model efficacy, his-

torical senses can still be used as examples to train the kernel width parameter, but

those examples themselves are also restricted to historical senses within the memory

threshold when making predictions during training. Despite our intuition, we observe

a consistent upward trend in predictive accuracy as the memory constraint becomes

more relaxed. Historical slang senses dating over 100 years nevertheless remain rele-
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Figure 5.5: Predictive accuracy of all chaining models with shared senses after removing historical
senses that exceed the memory threshold during prediction.

vant when considering the semantic variation of contemporary slang.

5.6 Conclusion

We have presented a principled and large-scale computational analysis of semantic

variation in slang over history. Inspired by the theoretical hypotheses of communica-

tive need and semantic distinction, we develop a computational approach to test these

theories against regional slang attested in the UK and the US over a long period of

history. We find regular patterns in semantic variation in slang that are predictive

of regional identities of the emerging slang senses. While both hypotheses are found

to be relevant for predicting semantic variation of slang, we observe that semantic

distinction better explains the semantic variation in slang terms used in the US and

the UK over the past two centuries. Our work sheds light on the basic principles

of semantic variation of slang and provides opportunities for incorporating histori-
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cal cultural elements in the automated processing of informal language such as slang

generation and interpretation. Future work could consider extending the experiments

toward more fine-grained community structures. Examples include the examination

of slang usages across different US States (cf. Cassidy, 1985) or online communities

of practice (cf. Del Tredici and Fernández, 2017, 2018).



Chapter 6

Conclusion

6.1 Summary

This dissertation explored the modeling of slang semantics and its use in improving

natural language processing for slang. While existing approaches disregard regular-

ities in slang usages or are not built specifically for slang, my contributions have

focused on theoretically grounded approaches that leverage principles of semantic ex-

tension. My results show that the semantic extension of slang is indeed non-arbitrary,

motivating a principled computational framework of slang semantics that addresses

many challenging aspects of slang in NLP.

Chapter 1 introduced the essential tasks in NLP for slang and how characteristics

of slang make these problems difficult. In this chapter, I also surveyed relevant

linguistic work that not only characterizes what slang is but also lays out important

challenges that must be addressed in achieving effective processing of slang. Chapter 2

reviewed existing NLP work on the automatic processing of slang. Although much

of the existing work does not focus specifically on slang, but it remains relevant in

studying its variation in online social media as well as the modeling of slang word

formation. Finally, I also surveyed relevant cognitive and linguistics work on word

sense extension that motivates the models I present in this dissertation.

The next three chapters described my core contributions to improve NLP for slang.

114



CHAPTER 6. CONCLUSION 115

Motivated by by a combination of probabilistic models and deep learning techniques,

Chapter 3 presented my work on slang generation in which a principled framework of

slang semantics captured patterns of semantic extension attested in historical slang

reuse — the case where an existing word in the lexicon is chosen to express a new

meaning in slang. The generative nature of the framework allows generalization to-

wards novel slang. Also, contrastively learned sense representations better captures

regularities in slang semantics compared to off-the-shelf embeddings trained on con-

ventional language, closing the gaps illustrated in Figure 3.2.

In Chapter 4, I showed how this slang generation model can be applied to the more

practical task of slang interpretation and translation. By incorporating semantic in-

formation of the slang expression into a general purpose interpretation/translation

model, the systems can make more informed choices that address the inherent ambi-

guities of a context-based model. This approach is particularly advantageous because

only a relatively small sample of attested slang usage is required to train the model,

whereas existing end-to-end neural network based approaches require much larger

slang datasets to achieve adequate performance despite the scarcity of data.

Chapter 5 of this dissertation modeled the processes underlying slang semantic

variation. Motivated by linguistic theory (Sornig, 1981; Mattiello, 2005; Eble, 2012),

I considered two hypotheses based on communicative need and semantic distinction.

In a large-scale experiment on regional semantic variation of slang over US and UK,

my results have shown that both hypotheses play a role in predicting the regional vari-

ation and that semantics alone reveals non-trivial predictability of a slang’s regional

identity. The results show that contextual information indeed plays an important

role in shaping how a slang is used and opens promising avenues of future work in

incorporating contextual information into NLP systems for slang.
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6.2 Future extensions

6.2.1 Extending the model of slang semantics

A limitation of the semantic framework proposed in this dissertation is that it only

models cases of slang reuse but not coinage (i.e. slang usage with novel word forms).

Because of this, little semantic information can be leveraged in tasks such as slang

interpretation for newly coined slang. While many of the existing methods are pro-

posed or can be potentially applied to slang coinage (see Section 2.3 for a detailed

review), the relevant modeling approaches that have been applied to slang remain

rudimentary. For instance, Ni and Wang (2017) only used a character-level LSTM

encoder to represent the semantics of a slang word before combining it with contex-

tual information. Here, it would be interesting to explore the applicability of more

modern NLP techniques (e.g., Sennrich et al. (2016), Pinter et al. (2017), and Kudo

and Richardson (2018)) in processing out-of-vocabulary words (OOVs) and to evalu-

ate the extent to which recent LLM based methods could capture meanings of newly

coined slang.

A key question yet to be addressed is whether the semantic model of newly coined

slang words is similar to that of their conventional counterparts. In the case of slang

reuse, we have theoretical evidence showing that slang semantic extension is mech-

anistically similar to conventional semantic extension but differs in the distribution

of extension devices. Similarly, it is conceivable that how the meanings of a newly

coined slang is inferred from its constituent morphological units can substantially

differ from conventional coinage. For example, conventional and slang blends may

share different processes in extending senses of their constituents to create a blended

sense. Pinter et al. (2020) show preliminary evidence where differences in BERT rep-

resentations of lexical blends and their constituents are farther apart than those of

compounds. Here, many of the lexical blends may be slang as it is a common device

in slang word formation (Eble, 2012). Existing word formation and OOV processing
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methods, however, rely on training examples reflecting existing conventional words.

Because of this, these methods implicitly assume that slang word formation shares

the same underlying semantic model as conventional word formation. Future work

could explore whether such an assumption can be warranted, and if not, modeling

techniques that capture the semantics of newly coined slang.

Extending this further, the use of slang can also appear in idiomatic phrases. In

this dissertation, I have considered phrasal slang with fixed forms. For example, the

slang phrase night owl has been considered as a single lexical item in my proposed

models. As long as dictionary entries exist for the phrase, the semantic model does

not need to distinguish between words and phrases. Slang usages, however, can also

appear as creative compositions of words. For example, instead of the canonical

phrase night owl, one may come up with a sentence such as “Danny is an owl at

night”. Here, the idiomatic phrase owl at night constitutes a slang usage similar to

night owl. It would thus be interesting to explore modeling approaches for idiomatic

expressions (e.g., Fazly et al., 2009; Liu and Hwa, 2018; Zeng and Bhat, 2021, 2022)

to extend the semantic model for slang.

Another important avenue of extension would be to consider slang in a multilingual

setting. Work presented in this dissertation has focused on the modeling and pro-

cessing of English slang but slang is also widely used in other languages and cultures.

The processing of slang in other languages presents a great challenge in modeling

efficiency as data becomes more scarce compared to English. A potential solution to

alleviate this challenge is to transfer the semantic knowledge learned from English

slang to the other language. Recent multilingual word alignment methods (Artetxe

et al., 2018; Jalili Sabet et al., 2020; Shi et al., 2021) operate on structural similarities

in the underlying embedding space instead of relying on supervised word pairs. This

allows direct transfer of knowledge into another language from a learned embedding

space such as the contrastive sense embeddings presented in Chapter 3.

It is important to note that such an approach assumes that both the creation and
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Figure 6.1: Relative language modeling performance between literal and slang usages for state-of-
the-art large language models.

use of slang are similar across different language and cultures. While the method-

ology presented in this dissertation does not make explicit assumptions specific to a

particular language, it is conceivable that differences in culture and values reflected

in languages can lead to differences in how slang is created and used. For example,

languages used by more progressive cultural groups may make more frequent use of

innovative sense extension strategies. A careful evaluation on the results of transfer

learning could reveal the validity of this assumption.

6.2.2 Slang and large language models

Recent advances in building large language models (LLMs) as foundational models

for NLP have made significant advances in many important NLP tasks (Bommasani

et al., 2021). Results from a set of preliminary experiments shown in Figure 6.1 and

6.2 show that this is also the case for processing slang. For Figure 6.1, I use 102

test sentences from the slang translation experiment in Chapter 4 (See Section 4.7

for details) where each sentence contains a marked slang and a corresponding literal

paraphrase. The slang expression is then masked out and each language model is
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Figure 6.2: Absolute language modeling performance on slang usages for state-of-the-art large lan-
guage models across different emergence period for the slang.

asked to fill in the blank. For example, LM probabilities of the slang word blazing

and literal paraphrase excellent will be compared against:

1. Good purchase, that jacket is blazing.

2. Good purchase, that jacket is excellent.

Finally, the mean LM likelihood of all ground-truth literal and slang expressions are

compared against:

Relative likelihood =

∑
i Si∑
i Li

(6.1)

Here, Si denotes the language model probability assigned to the slang word in the

i’th sentence and similarly Li for the literal word’s probability. Here, I aggregate

over probabilities for each type instead of individual ratios to avoid over-emphasizing

outlier slang that the model is either very confident or very impoverished on. To

control for potential confounds in tokenization, I only consider sentences such that

both the corresponding slang and literal paraphrase are single token expressions. For

Figure 6.2, a set of 5,052 slang-containing sentences from Green’s Dictionary of Slang
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Model OSD GDoS UD

fastText 0.35 ± 0.033 0.30 ± 0.010 0.31 ± 0.037
SBERT 0.32 ± 0.033 0.32 ± 0.010 0.28 ± 0.034

GPT-3 0.31 ± 0.032 0.31 ± 0.011 0.30 ± 0.035

Table 6.1: Normalized ranks (between 0 and 1, lower is better) of a word’s slang definition em-
bedding towards its conventional definition embedding over entries in The Online Slang Dictionary
(OSD), Green’s Dictionary of Slang (GDoS) and Urban Dictionary (UD). I compare the embeddings
produced by GPT-3 against those computed in Chapter 3 using fastText (Bojanowski et al., 2017)
and Sentence-BERT (SBERT; Reimers and Gurevych, 2019).

has been used. For each sentence, the LM probability of the slang expression is

measured.

Although GPT-3 (Brown et al., 2020) is architecturally similar to the earlier BERT-

like models (Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019), access to much

larger training data made it more confident on the slang usages compared to the

literal paraphrases. An interesting direction of research is thus to interpret such

large language models and find out whether models like GPT-3 are indeed modeling

the semantics of slang. I repeat the sense representation experiment presented in

Section 3.7.5 on GPT-3 sense representations.1 Table 6.1 shows an extension of the

results presented in Table 3.5. Although GPT-3 assigns much higher probabilities to

slang terms, I do not observe any significant difference in the underlying geometry

of the representations. The results suggests that GPT-3’s source of knowledge comes

from frequent instances of slang usage seen during training and simply treats them as

additional “conventional” senses. It has yet been able to (or decided not to) encode

any structural knowledge of slang into its representations.

The preliminary results shown may reflect memorization from data. Indeed, the

slang usages being tested here have been well documented on the internet and have

seen many years of usage. Higher likelihood on the slang expressions indicates that the

model has higher confidence on the slang expression than the literal paraphrase. This

suggests that GPT-3 can pinpoint the meaning and usage context of the slang quite

well, something that is quite difficult to achieve without seeing the slang beforehand.

1Sense representations are obtained be encoding definition sentences using the text-similarity-davinci-001 embed-
ding model from the OpenAI API
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Another piece of evidence suggesting data memorization is that GPT-3’s performance

on more contemporary slang is much higher than the competing models while it does

not show such a high performance gap in historical slang. Once GPT-3 scale training

becomes more accessible to researchers in the future, one can investigate the effect to

which certain data sources have on slang related performance. For example, ablating

parts of Urban Dictionary and Reddit data from training would allow us to pinpoint

cases of data memorization.

6.2.3 Fairness and privacy

The use of slang is often associated with derogatory topics that can cause harm (Green,

2010; Eble, 2012). Previous study by Kulkarni and Wang (2017) has shown that slang

usages not only reflect gender and religious stereotypes, they are often more socially

prejudicial compared to conventional language. While many of these slang usages are

explicit and thus easy to detect, there are many negatively-connotated usages that

hide under the guise of a neutral word (e.g., using the word published to express ‘Very

ugly’). Recent approaches in detecting euphemistically coded language are often lim-

ited in scope, where the system can only perform detection and interpretation within

a pre-determined set of topics (Magu and Luo, 2018; Zhu et al., 2021), a limitation

caused by the lack of proper semantic representation beyond distributed semantic

models. Naturally, the slang semantic model proposed in this dissertation can be

applied to better decipher euphemistic uses of hate-speech.

It is also important to consider the potential biases and harm a system may in-

troduce as a result of improved performance on slang. Language use reflects one’s

social identity (Clark, 1998; Eckert, 2012) and is especially salient in the case of

slang (Labov, 1972, 2006; Mattiello, 2005; Eble, 2012; Slotta, 2016; Denis, 2021). For

example, users belonging to certain social groups may be more likely to invoke a

specific set of slang compared to the general public. Several issues may arise from

such variations in language use. First, an NLP model that performs poorly on slang
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compared to conventional language would introduce unwanted biases against social

groups who are more likely to use slang, resulting in worse performance when used by

these groups of users (cf. Blodgett and O’Connor, 2017). This issue can be alleviated

by improving NLP models’ abilities in processing slang to which this dissertation

discusses potential methods to do so.

A more critical problem to ask is whether the NLP systems are biased towards

specific sets of slang that correlate with users identities in certain social groups.

Figure 6.2, for example, shows how LLMs such as GPT-3 may perform poorly on

contemporary slang compared to more historical ones, resulting in performance bias

against younger users who use contemporary slang more frequently. Note that this

issue differs from the slang vs. conventional case. Even when the model can process

slang in relatively similar performance compared to conventional language, certain

sets of slang may be more favored than others. This could result from design deci-

sions such as data selection. More recent slang usages, for example, may have less

representation in a training corpus and therefore more difficult to process. It is im-

portant for future work to consider a framework that carefully evaluates potential

biases relevant to slang usage and guide NLP practitioners towards design decisions

that minimize such unwanted biases.

Aside from performance biases a model may introduce, user privacy is another

important issue to consider. Since the use of slang may potentially reveal the social

identity of the user, as shown in Chapter 5, it would be ideal to create an evalua-

tion framework that determines the extent to which existing and future NLP systems

can infer user identities. In cases where the models can reliably infer one’s identity

based on slang use, it may be of interest to introduce some form of differential pri-

vacy (Dwork and Roth, 2014) that prevents the leak of user identity. Here, instead

of protecting a specific piece of information (e.g., a phone number), we would like

to protect a user’s identity regardless of the type of slang being used. For example,

an embedding model could produce similar representations for the US slang gucci
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and UK slang massive for expressing the meaning ‘Good, excellent’, making it more

difficult for an LLM based system to infer the regional identity of the user. In this

case, the ideal embeddings would capture the semantic similarities between gucci and

massive but not to encode excessive demographic information associated with each

slang usage.

6.2.4 Applications in linguistics and social science

While it is important to improve the performance of NLP systems for slang, the lin-

guistic knowledge about slang that can be uncovered while building such systems is

also worth careful attention. Most existing linguistic work on slang is qualitative in

nature (e.g., Mattiello, 2005) or studies slang at a small scale (e.g., Denis, 2021). Al-

though some of these studies also present data-driven results, the empirical evidence

the conclusions were made from often only involves a handful of carefully picked ex-

amples. Warren (1992), being a rare exception, shows how large-scale data collection

and processing can result in much more rigorous linguistic results. The collection of

large-scale data used to train NLP systems for slang would allow linguists to conduct

studies that analyze slang more diversely.

Successful NLP systems for slang can also reveal important characteristics of slang

that has not been discussed in prior work. For example, my work on slang detec-

tion (Pei et al., 2019) has discovered that slang usages employ much more surprising

Part-of-Speech shifts compared to conventional language. Also, the results of my slang

generation work (Chapter 3) reinforces the findings that slang sense extension indeed

shares similar underlying linguistic mechanisms with conventional sense extension,

evident by above-chance performance from the chaining models using off-the-shelf

embeddings. Furthermore, the substantial gain from employing contrastive learning

suggests that the specific linguistic devices employed for sense extension indeed differs

between slang and conventional language.

In addition to linguistic knowledge discovered in the process of enhancing NLP for
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slang, the advancement in NLP for slang can also be directly applied to verify previ-

ously proposed linguistic theories using large-scale datasets. For example, Chapter 5

shows how a model of slang variation, combined with a large slang dictionary, can be

applied to study slang variation at different periods of history. It shows how future

work can apply slang NLP to uncover interesting linguistic insights at a scale that is

not feasible with manual inspection.

Slang is ubiquitous in online social media text and thus presents research opportu-

nities in computational social science. First, the ability to model slang may already

bring noticeable improvement in related analytic tasks. Previous work has shown

promising results in incorporating NLP methodologies for slang into sentiment analy-

sis (Wu et al., 2018; Aly and van der Haar, 2020; Wilson et al., 2020), where the slang

usages often reflect non-neutral sentiment. In Chapter 5, I also demonstrated how

models of slang extension can be applied to model regional semantic variation of slang.

At the same time, the use of slang is a good indicator of one’s social identity (Labov,

1972, 2006; Mattiello, 2005; Eble, 2012; Slotta, 2016; Denis, 2021), allowing the infer-

ence of user identity in situations where such information is scarce, unreliable, and/or

missing in our data. For instance, Chapter 5 of this dissertation demonstrates how

one can trace the regional identity of a novel slang usage by looking at historical slang

senses of the same slang expression. Such methodology can be leveraged to infer the

regional identity of Reddit users based on their use of slang, the type of data often

desired in online social media analysis but difficult to collect in practice.

Analysis on social media data also has good potential in further improving NLP

for slang. Existing work has shown how contextual information alone (i.e. without

text) can be used to predict user behavior (Waller and Anderson, 2020). Given that

slang is a contextually motivated form of language, such contextual information can

be incorporated to further enhance the performance of NLP systems for slang. The

work presented in Chapter 5, for example, can inform the system about the slang

user’s regional identity, a piece of information that our system can leverage to output
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more targeted results. For instance, if a user writes many US exclusive slang, then the

subsequent user of the word blazing by the same user can be predicted to be expressing

something good, the typical use of blazing in the US. Future work could extend this

idea further by exploring different types of meta-information that are available in

existing social media analyses (e.g., Gilbert and Karahalios, 2009; Del Tredici and

Fernández, 2017; Waller and Anderson, 2020) and consider creating datasets of slang

that capture such information.

6.3 Final remarks

Slang may appear to be a daunting problem domain for natural language processing

considering many of its unique characteristics. Despite its ubiquity in daily language

use, slang remains under-represented in the literature. By dissecting the problem

space and better understanding the underlying semantic principles of slang, I hope my

dissertation work makes slang a more accessible research topic for future researchers.

Although this dissertation makes several key contributions towards the automatic

processing for slang, it remains an open challenge to design practical NLP systems

that are capable of processing slang. Even though my proposed approaches can

efficiently learn from dictionary-based data, the performance gap between the pro-

cessing of slang and conventional language has yet to be closed. State-of-the-art large

language models, such as GPT-4 (OpenAI, 2023), have began to reach human perfor-

mance on many complex tasks (Bubeck et al., 2023) without task-specific fine-tuning.

The unprecedented amount of training data from diversified sources also makes slang

occurrences much more commonplace, turning slang into a high-resource task. As a

result, systems such as ChatGPT become much more capable in processing slang.

While acknowledging these advancements, it is important to note the extent to

which high-resource methods such as GPT-4 can be applied. In this dissertation,

I considered the usage of a term to be slang if a corresponding entry exists in an
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English slang dictionary. In other words, defining what constitutes slang based on

lexicographers’ professional knowledge. This set of slang, although authoritative,

only represents the set of most well-known and well-spread slang. Many slang used

in smaller communities may not be represented. For example, the well-studied slang

mans is used as a first-person, singular reference replacement in Toronto (Denis,

2016). However, none of the slang dictionary resources considered in this dissertation

includes it, possibly due to its limited regional spread. The use of slang is also not

restricted to English, many cases of which actually involve a mix of different lan-

guages (Denis, 2021). As we begin to consider slang used in more niche communities

and languages, slang once again becomes a resource-scarce problem, necessitating

the use of more data-efficient methods than language modeling. Therefore, once we

change perspectives on the kinds of slang we want to handle, many of its core chal-

lenges would remain relevant. In the most extreme scenario, I envision personalized

AI agents that would attune to slang usages specific to individual households.

The advancement in slang NLP also paves the road for many exciting downstream

research opportunities other than artificial intelligence. For example, previous work

has shown numerous opportunities in applying dictionary-based NLP techniques for

slang to problems such as social media sentimental analysis and find good success (Wu

et al., 2018; Aly and van der Haar, 2020; Wilson et al., 2020). I hope that the

advancement in automated processing of slang would enable creative solutions to

better address difficult problems in related areas such as linguistics and social science.



Appendix A

Resources

A list of resources used in this dissertation to conduct experiments on natural language

processing for slang:

Data sources:

• The Online Slang Dictionary (OSD):1

Tasks: Slang generation (Sun et al., 2019, 2021), slang detection (Pei et al.,

2019), and slang interpretation Sun et al. (2021).

Data source: http://onlineslangdictionary.com/

• Green’s Dictionary of Slang (GDoS):

Tasks: Slang generation (Sun et al., 2021) and slang variation (Sun et al., 2022).

Data source: https://greensdictofslang.com/

• Urban Dictionary (UD):

Tasks: Slang generation (Sun et al., 2021) and slang interpretation (Ni and

Wang, 2017; Sun et al., 2022).

Data source: https://www.urbandictionary.com/

Dataset - Kaggle: https://www.kaggle.com/datasets/therohk/

1The datasets for both OSD and GDoS cannot be publically distributed due to copyright restrictions. Please
contact the corresponding authors for permission to access.
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urban-dictionary-words-dataset

Dataset - Ni and Wang (2017): http://www.cs.ucsb.edu/~william/data/

slang_ijcnlp.zip

Dataset - Sun et al. (2021): https://github.com/zhewei-sun/slanggen

• Reddit:

Tasks: Slang variation (Del Tredici and Fernández, 2018; Lucy and Bamman,

2021).

Data source: https://www.reddit.com/

Dataset - Lucy and Bamman (2021): https://github.com/lucy3/ingroup_

lang

• English Wiktionary:

Tasks: Slang variation (Sun and Xu, 2022).

Data source: https://en.wiktionary.org/wiki/English

Dataset: https://kaikki.org/dictionary/rawdata.html

Code repositories:

• CatGO - Python Library for Categorization (Sun et al., 2019):

https://github.com/zhewei-sun/catgo

• Slang Generation (Sun et al., 2021):

https://github.com/zhewei-sun/slanggen

• Slang Interpretation and Translation (Sun et al., 2022):

https://github.com/zhewei-sun/slanginterp

• Slang Semantic Variation (Sun and Xu, 2022):

https://github.com/zhewei-sun/slangsemvar

https://www.kaggle.com/datasets/therohk/urban-dictionary-words-dataset
http://www.cs.ucsb.edu/~william/data/slang_ijcnlp.zip
http://www.cs.ucsb.edu/~william/data/slang_ijcnlp.zip
https://github.com/zhewei-sun/slanggen
https://www.reddit.com/
https://github.com/lucy3/ingroup_lang
https://github.com/lucy3/ingroup_lang
https://en.wiktionary.org/wiki/English
https://kaikki.org/dictionary/rawdata.html
https://github.com/zhewei-sun/catgo
https://github.com/zhewei-sun/slanggen
https://github.com/zhewei-sun/slanginterp
https://github.com/zhewei-sun/slangsemvar
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